期刊文献+

改进的Beamlet与Canny相结合提取复杂图像线特征 被引量:8

Complex image line feature extraction based on improved Beamlet transform and the Canny operator
原文传递
导出
摘要 传统Beamlet无结构算法在提取图像线特征时不仅存在重叠模糊的缺陷,而且在提取复杂图像线特征时不能有效地检测出目标信息,细节特征更是难以刻画。针对这些问题,提出将改进的Beamlet无结构算法与Canny算子相结合的方法提取复杂图像的线特征。首先,对图像进行Beamlet变换,通过改进Beamlet无结构算法,采用新的能量统计和制定新的划线规则,以保证每个二进方块最多有一条最优基;然后,对图像用Canny算子检测边缘,通过选取较大的Sigma,只检测明显的大边缘;最后,两者结合得到图像的线特征。从检测的线特征的线型连接程度等方面对该算法的性能进行了评价,并与现有的方法进行了比较,实验结果表明,该方法克服了两种方法单独提取线特征时存在的断裂、重叠、模糊和虚假边缘的缺点,有效地提高了复杂图像线特征提取的准确性和连续性。 Traditional line feature detection methods based on structureless algorithms of the Beamlet transform not only suffer from overlapping and ambiguities, they also can not detect the target information effectively. Moreover, they can not describe the detail information when extracting the line features of a complex image. Therefore, we propose a new line fea- ture extraction algorithm based on an improved Beamlet transform and the Canny operator. First, the Beamlet transform is performed. There is at most one optimal Beamlet in a dyadic square after improving the Beamlet structureless algorithm and using the new drawing rule and the new energy function. Second, the Canny operator for edge detection is used with a larger Sigma in order to detect only obvious edges. Finally, line feature are detected by a combination of both. The algorithm is evaluated under several aspects, such as the continuity of the line feature extraction, the false detection rate and the miss detection rate. Moreover, this method is compared to existing methods. The experimental results show that our proposed method not only overcomes their weakness such as fractureing, overlapping, sambiguities, false edges and so on, but also effectively improves the accuracy and continuity when extracting hne feature of complex image.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第7期775-782,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61165011) 江西省自然科学基金项目(2008GZS0034) 航空科学基金项目(20085556017 2010ZC56006) 江西省教育厅科技项目(GJJ10189)
关键词 BEAMLET变换 Canny算子 复杂图像 线特征提取 Beamlet transform Canny operator complex image line feature extraction
  • 相关文献

参考文献4

二级参考文献27

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2杨明,尹勇,彭玉华,周新虹.Beamlet变换与多尺度线特征提取[J].电子学报,2007,35(1):100-103. 被引量:12
  • 3Donoho D, Huo X. Beamlets and muhiscale image analysis, multi-scale and multiresolution methods [ C ]//Computational Science and Engineering. New York, NY, USA : Springer, 2002, 20: 149-196.
  • 4Bresenham J E. Algorithm for computer control of a digital plotter [J~. IBM Systems Journal, 1965, 4(1): 25-30.
  • 5Canny J. A computational approach to edge detection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6) : 679-698.
  • 6Leavers V F. Shape Detection in Computer Vision Using the Hough Transform [ M ]. New York, USA : Springer-Verlag New York Inc, 1992.
  • 7Donoho D L, Huo Xiaoming. Beamlets and muhiscale image analysis[ C]//Multiscale and Multiresolution Methods: Theory and Applications, Lecture Notes in Computational Science and Engineering. Berlin, Germany: Springer Press,2001, (20) :149- 196.
  • 8Shi Qinfeng, Zhang Yanning. Adaptive linear feature detection based on beamlet [ C ]//Proceeding of the Third International Conference on Machine Learning and Cybernetics. Piscataway, NJ, USA : IEEE Press, 2004 : 3981-3984.
  • 9Huo Xiaoming, Chen Jihong.JBEAM: Multiseale curve coding via beamlets [J]. IEEE Transactions on Image Processing, 2005, 14(11) : 1665-1677.
  • 10Donoho D L. Beamlab Toolbox[ CP/OL]. (2003 - 01 - 29) [2009 -03 - 10]. http://www-stat, stanford, edu/- beamlab/.

共引文献23

同被引文献58

  • 1李俊山,马颖,赵方舟,郭莉莎.改进的Canny图像边缘检测算法[J].光子学报,2011,40(S1):50-54. 被引量:64
  • 2秦志远,吴冰,王艳,山海涛.图像平滑算法比较研究及改进策略[J].测绘学院学报,2005,22(2):103-106. 被引量:26
  • 3夏若安,朱理,胡双炎.高精度零件尺寸测量系统[J].科学技术与工程,2005,5(20):1506-1509. 被引量:8
  • 4李艳灵,魏涛.基于轮廓波变换的模糊聚类图像分割[J].信阳师范学院学报:自然科学版,2011,24(3):405-409.
  • 5Bertelli L, Ctumdrasckaran S, Gibou F, et al. On the length and area regularization for multiphase level set segmentation [ J ] International Journal on Compuler Vision. 2010, 90( 3 ) :267-282.
  • 6Haris K, Efstratiadis S N, Maglaveros N, et al. Model-based morpbohJgical segmentation and ltzbeling fcoromtry angiogrmns[ J ]. IEEE Trans- action on Medical Imaging, 1999, 18( 10): 1003-1015.
  • 7Chitade A Z. Color based image segmentation ttsing k-means clustering[ J ]. Inlernalional Journal of Engineering Science aml Technology, 2010, 2(10) : 5319-5325.
  • 8Priyanka Mukhopadhyay, Bidyut B Chaudhuri. A survey of Hough transform[J]. Pattern Recognition, 2015, 48(3): 993-1010.
  • 9Gustavo Botelho de Souza, Aparecido Nilceu Marana. HTS and HTSn: New shape descriptors based on Hough transform statistics[J]. Computer Vision and Image Understanding, 2014, 127: 43-56.
  • 10Xu Jiangtao, Wang Lei, Shi Zaifeng. A switching weighted vector median filter based on edge detection[J]. Signal Processing, 2014, 98: 359-369.

引证文献8

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部