期刊文献+

基于相位谱和调谐幅度谱的显著性检测方法 被引量:5

Saliency detection method based on phase spectrum and amplitude spectrum tuning
原文传递
导出
摘要 针对目前视觉注意选择领域中的谱残余方法(SR)显著图对比度较差、细节显著性检测效果不理想的问题,通过分析图像频谱特性与显著性的关系,提出了一种基于频谱分析的显著性区域检测方法。该方法通过保留傅里叶相位谱并对幅度谱进行分段非线性调谐,达到抑制图像冗余信息、增强图像显著性信息的效果。实验结果表明,本文基于相位谱和幅度谱调谐(PTA)的显著性检测方法得到的显著图较SR方法对比度更高,对显著细节的检测效果也更明显。 Since the spectral residual (SR) method of the visual attention model has poor contrast saliency maps and unsatisfactory detection of saliency details. In this paper, we propose a saliency detection method based on spectrum analysis by discussing the relationship between spectra/characteristics of the image and the saliency. This method keeps the phase spectrum and tunes the amplitude spectrum using a pieeewise non-linear function for the purpose of inhibiting the redundant information and enhancing the saliency image information. Experimental results show that saliency detection method based on phase spectrum and tuning amplitude spectrum (PTA) obtains a saliency map, which has better contrast, and allows for a better detection of the details of the saliency information.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第7期821-827,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(61003075 61170261) 国防预研基金项目(9140A01010309KG01)
关键词 相位谱 幅度谱 非线性调谐 显著图 phase spectrum amplitude spectrum nonlinear tuning saliency map
  • 相关文献

参考文献12

  • 1Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ) : 1254-1259.
  • 2Hou X, Zhang L. Saliency detection: a spectral residual approach [ C ]/! Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York : IEEE ,2007 : 1-8.
  • 3Guo C L, Ma Q, Zhang L M. Spatio-temporal saliency detection using phase spectrum of quateruion Fourier transform[ C ]//Pro- ceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York : IEEE ,2008.
  • 4Ruderman D. The Statistics of Natural Images[ J]. Computation in Neural Systems, 1994, 5(4) :517-548.
  • 5Srivastava A, Lee A, Simoncelli E, et al. On Advances in Sta- tistical Modeling of Natural Images [ J ]. Journal of Mathematical Imaging and Vision, 2003 18 ( 1 ) : 17 -33.
  • 6Jin Y F. Face Recognition method research base on phase con- gruency and modular PCA[ D] . Lanzhou: Lanzhou University of Technology 2007.
  • 7Castleman K. Digital Image Processing [ M ]. New York: Pren- tice-Hall, 1996.
  • 8Chen 13 Y, Wu C D. A new model of visual attention selection based on amplitude Modulation Fourier Transform [ C ]// Pro- ceedings of Chinese Control and Decision Conference. Guilin, China: IEEE, 2009: 46174622.
  • 9Martin D, Fowlkes C, Tal D, et al. A database of human seg- mented natural images and its apphcation to evaluating segmenta- tion algorithms and measuring ecological statistics [ C ] /! Pro- ceedings of the Eighth IEEE International Conference on Comput- er Vision ICCV 2001. Vancouver, Canada:IEEE Computer Soci- ety, 2001,2: 4-16423.
  • 10Li Z. Theoretical understanding of the early visual Processes by data compression and data selection [ J ]. Network : Computation in Neural Systems, 2006, 17(4) : 301-334.

同被引文献62

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部