期刊文献+

融合位置和姿态信息的模型概率估计 被引量:3

Model Probability Estimation Based on Information Fusion of Position and Attitude
下载PDF
导出
摘要 为了利用目标的姿态信息来提高机动目标跟踪的精度,提出一种融合位置和姿态信息的模型概率估计算法。该算法采用模糊关联的方法,实现了基于姿态信息的模型概率估计;根据离散点过程滤波的基本理论,对其进行滤波;采用贝叶斯推理方法,对来自姿态的模型概率和来自位置的模型概率进行了信息融合,并将融合后的模型概率应用到IMM算法。仿真表明,改进的IMM在保持传统IMM实时性的基础上提高了跟踪精度,从而验证了姿态信息对目标跟踪的辅助作用。 In order to use attitude information to improve the precision of maneuvering target tracking, an estimating algorithm of model probability was proposed based on information fusion of position and attitude. Firstly, the algorithm adopted fuzzy association method to estimate model probability based on attitude information. Then, the estimated model probability was filtered according to the theory of discrete point process filtering. At last, model probability from attitude and that from position were fused based on Bayes inference method, and the fused model probability was introduced into IMM algorithm. Simulations show that the improved IMM has as good real-time performance as traditional IMM but better tracking precision, which proves the assistance of attitude to target tracking.
机构地区 军械工程学院
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第7期1455-1459,共5页 Journal of System Simulation
基金 武器装备军内科研项目
关键词 模型概率 姿态 信息融合 IMM model probability attitude information fusion IMM
  • 相关文献

参考文献6

  • 1Gan-lin S, Bing J, Yun-feng Z. A review of 3D pose estimation from a monocular image sequence [C]// Proceedings of 2nd International Congress on Image and Signal Processing. Tianjing, China. 2009: 1946-1950.
  • 2Koks D, Challa S. An Introduction to Bayesian and Dempster-Shafer Data Fusion [R]. Sydney, Australia: DSTO Systems Sciences Laboratory, 2005.
  • 3Boyd J E, Sworder D D. Tracking a maneuvering target using sensors of variable quality [J]. IEEE Trans on Aerospace and Electronic Systems, 2000, 36(2): 501-507.
  • 4吴俊,杨峰,屈立安,程咏梅,潘泉.分布式多传感器信息融合仿真系统设计与实现[J].系统仿真学报,2009,21(21):6950-6953. 被引量:3
  • 5Yang C, Bakich M, Blasch E. Pose angular-aiding for maneuvering target tracking [C]// 2005 7th International Conference on Information Fusion, 2005: 32-39.
  • 6Herman S M. A particle filter approach to joint passive radar tracking and target classification [D]. Illinois, USA: University of Illinois, 2002.

二级参考文献8

共引文献2

同被引文献16

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部