期刊文献+

修正免疫克隆约束多目标优化算法 被引量:16

Modified Immune Clonal Constrained Multi-Objective Optimization Algorithm
下载PDF
导出
摘要 针对约束多目标优化问题,提出修正免疫克隆约束多目标优化算法.该算法通过引进一个约束处理策略,用一个修正算法对个体的目标函数值进行修正,并对修正后的目标函数值采用免疫克隆算法进行优化,用一个精英种群对可行非支配解进行存储.该算法在优化过程中,既保留了非支配可行解,也充分利用了约束偏离值小的非可行解,同时引进整体克隆策略来提高解分布的多样性.通过对约束多目标问题的各项性能指标的测试以及和对比算法的比较可以看出:该算法在处理约束多目标优化测试问题时,所得解的多样性得到了一定的提高.同时,解的收敛性和均匀性也得到了一定的改进. This paper proposes a modified immune clonal constrained multi-objective algorithm for constrained multi-objective optimization problems. By introducing a new constrained handling strategy to modify the objective values of individuals, the proposed algorithm optimizes the individuals with the modified objective values and stores the non-dominated feasible individuals in an elitist population. In the optimization process, the algorithm not only preserves the non-dominated feasible individuals, but also utilizes the infeasible solutions with smaller constrained violation values. Meanwhile the new algorithm introduces the overall cloning strategy to improve the distribution diversity of the solutions. The proposed algorithm has been tested on several popular constrained test problems and compared with the other two constrained multi-objective optimization algorithms. The results show that the optimal solutions of the proposed algorithm are more diverse than the other two algorithms and better in terms of convergence and uniformity.
出处 《软件学报》 EI CSCD 北大核心 2012年第7期1773-1786,共14页 Journal of Software
基金 国家自然科学基金(61001202 61003199) 中国博士后科学基金(201104658 20090451369 200801426 20080431228) 陕西省自然科学基础研究计划(2009JQ8015 2010JQ8023) 国家教育部博士点基金(20100203120008 20090203120016 200807010003) 高等学校学科创新引智计划(B07048) 教育部'长江学者和创新团队发展计划'(IRT1170)
关键词 约束多目标优化 免疫克隆 约束处理策略 约束偏离值 非支配解 constrained multi-objective optimization immune clonal constrained handling strategy constrained violation value non-dominated solutions
  • 相关文献

参考文献5

二级参考文献25

  • 1刘芳,杨海潮.参数可调的克隆多播路由算法[J].软件学报,2005,16(1):145-150. 被引量:16
  • 2GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 3郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 4[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 5[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 6[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 7[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 8[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.
  • 9[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329.
  • 10[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331.

共引文献555

同被引文献158

引证文献16

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部