期刊文献+

改进的三维ODT四面体网格质量优化算法 被引量:1

Enhanced 3D Optimal Delaunay Triangulation Optimization Method for Tetrahedral Mesh Quality
下载PDF
导出
摘要 针对密度非均匀四面体网格,提出一种改进的三维ODT(optimal Delaunay triangulation)网格光顺算法,提高了ODT的适应性.在四面体网格中,以每一内部节点为核心节点,创建由与该节点相连接的四面体单元构成的星形结构;根据网格尺寸场把其星形结构转换到以核心点为中心的归一化空间内,然后在归一化空间内应用经典ODT光顺算法对核心点位置进行优化;通过中值重心坐标将核心点转换回物理空间;这样,通过逐一优化内部节点的空间位置达到优化四面体网格整体质量的目的.算例表明,该算法有效、健壮;对于密度非均匀的四面体网格,其光顺效果比经典的ODT算法更好. For tetrahedral meshes with non-uniform density, an enhanced 3D ODT(optimal Delaunay triangulation) optimization method for mesh quality is proposed in this paper, which extends the adaptability of ODT. In a tetrahedral mesh, taking an inner node as a core, its vicinity elements form a star structure. Then the core node is transformed into a uniform size space according to size field. The optimal position of the core is obtained by applying the classical ODT optimization method. Finally, the optimal position is transformed into physical space through mean value coordinates. Through the above steps, all inner nodes are optimized and the quality of the tetrahedral mesh is improved. The numerical applications illustrate that the proposed method is effective and robust, and the smoothing result is better than the classical ODT optimization method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第7期949-953,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(10572032 10872040) 国家"九七三"重点基础研究发展计划项目(2009CB723800) 国家科技重大专项资助项目(2011ZX02403-004)
关键词 ODT(optimal DELAUNAY triangulation) 中值重心坐标 四面体单元 光顺 有限元 optimal Delaunay triangulation (ODT) mean value coordinates tetrahedral element smoothing finite element method
  • 相关文献

参考文献10

  • 1关振群,宋超,顾元宪,隋晓峰.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,15(1):1-14. 被引量:169
  • 2王磊,聂玉峰,李义强.Delaunay四面体网格并行生成算法研究进展[J].计算机辅助设计与图形学学报,2011,23(6):923-932. 被引量:17
  • 3Field D A. Laplacian smoothing and Delaunay triangulations [J]. Communications in Applied Numerical Methods, 1988, 4(6): 709-712.
  • 4Freitag L A. On combining Laplacian and optimization-based mesh smoothing techniques [C] //Proceedings of AMD Trends in Unstructured Mesh Generation. New York: ASME Press, 1997, 220:37-43.
  • 5Xu H T, Newman T S. An angle-based optimization approach for 2D finite element mesh smoothing [J]. Finite Elements in Analysis and Design, 2006, 42(13): 1150-1164.
  • 6Du Q, Faber V, Gunzburger M. Centroidal Voronoi tessellations: applications and algorithms [J]. SIAM Review, 1999, 41(4): 637-676.
  • 7Qiang Du,Max Gunzburger,Lili Ju.Advances in Studies and Applications of Centroidal Voronoi Tessellations[J].Numerical Mathematics(Theory,Methods and Applications),2010,3(2):119-142. 被引量:6
  • 8Alliez P, Cohen-Steiner D, Yvinec M, et al. Variational tetrahedral meshing [J]. ACM Transactions on Graphics, 2005, 24(3): 617-625.
  • 9Floater M S. Mean value coordinates [J]. Computer Aided Geometric Design, 2003, 20(1): 19-27.
  • 10Floater M S, Kos G, Reimers M. Mean value coordinates in 3D[J]. Computer Aided Geometric Design, 2005, 22 (7): 623-631.

二级参考文献65

共引文献186

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部