期刊文献+

低CO_2排放的太阳能/甲醇互补系统热力经济性分析 被引量:1

Thermo-Economic Analysis of the Low-CO_2 Emission Solar/Methanol Hybrid Power Generation System
原文传递
导出
摘要 基于品位匹配和多能源综合梯级利用的原则,本文提出了低CO_2排放的太阳能与化石能源互补发电系统LESOLCC,并对其进行了热力经济性能分析。所提系统以甲醇为燃料,中低温太阳能首先提供甲醇重整反应的反应热,从而转化为富氢合成气的化学能,实现品位提升;其次通过燃烧前对CO_2的捕集,实现燃料的清洁燃烧,最终在高效联合循环中实现其热功转换。结果表明:基本工况下,系统当量效率达到55.1%,比投资为833$/kW,发电成本为0.124$/kWh,回收期17年;与相同化石燃料输入及CO_2捕集水平的尾气捕集CO_2的常规燃气-蒸汽联合循环(CC-Post)相比,发电成本下降了10.1%,充分显示其优越性。 A novel gas-steam combined cycle power systems integrated with low/mid temperature solar heat thermo-chemical conversion and CO_2 capture,with methanol as the input fuel,have been proposed and analysed.Solar heat collected at 200~300℃is used to heat the endothermic methanol reforming reaction and is thereby converted into syngas chemical energy;the produced syngas is enriched with H_2 and CO_2(24.4%CO_2 and 74.7%H_2 by volume),thus is ready for pre-combustion decarbonization.The processed CO_2-lean syngas is used to fuel a gas/steam combined cycle.The results show that exergy efficiency of 55.1%can be achieved;the specific total plant cost is 833$/kW, the cost of electricity is 0.124$/kWh and the payback period is 17 years.As compared with the reference system with the same methanol input and CO_2 capture rate,the hybrid system exhibits the advantage of reduced cost of electricity by up to 10.1%.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第7期1091-1096,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金自助项目(No.50876106)
关键词 多能源互补系统 太阳热能 热化学集成 捕集CO_2 经济性 multi-energy complementary system solar heat thermo-chemical integration CO_2 capture economic performance
  • 相关文献

参考文献18

  • 1Lewis N S. Toward Cost-Effective Solar Energy Use [J]. Science, 2007, (315): 798- 801.
  • 2HONG Hui, JIN Hongguang, JI Jun, et al. Solar Thermal Power Cycle With Integration of Methanol Decomposition and Middle-Temperature Solar Thermal Energy [J]. Solar Energy, 2005, 78:49-58.
  • 3Nakagaki T, Ogawa T, Murata K, et al. Development of Methanol Steam Reformer for Chemical Recuperation [J].ASME J Eng Gas Turbines Power, 2001, 123:727-733.
  • 4Agrell J, Birgersson H, Boutonnet M. Steam Reforming of Methanol over a Cu/ZnO/A1203 Catalyst: a Kinetic Analysis and Strategies for Suppression of CO Formation [J]. Applied Catalysis A: General, 2002, 106:249 257.
  • 5刘启斌.中低温太阳能热化学制氢与工程热物理某些问题的代数显式解析解[D].北京:中国科学院工程热物理研究所,2007.
  • 6Aspen Plus@. Aspen Technology, Inc., Version 11.1 [EB/OL]. [2009-05-19]. http://www.aspentech.com/.
  • 7Lampert K, Ziebik A. Comparative Analysis of Energy Requirements of CO2 Removal from Metallurgical Fuel Gases [J]. Energy, 2007, 32:521 527.
  • 8Alie C, Backham L, Croiset E, et al. Simulation of CO2 Capture Using MEA Scrubbing: a Flow-Sheet Decompo- sition Method [J]. Energy Conversion and Management, 2005, 46:475- 487.
  • 9Pitz-Paal R, Dersch J, Milow B. European Concentrated Solar Thermal Road-Mapping [R]. German: the German Aerospace Center (DLR), 2005.
  • 10Carcasci C, Facchini B. Comparison Between Two Gas Turbine Solutions to Increase Combined Power Plant Ef- ficiency [J]. Energy Conversion & Management, 2000, 41: 757-773.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部