期刊文献+

纳米流体的激光自混频功率谱密度研究

Research on Power Spectral Density of Self-Mixing Signal in Nanofluid
原文传递
导出
摘要 纳米流体运动特性和颗粒参数的测量对纳米流体换热效率的研究具有重要意义。本文将激光自混频技术应用于纳米流体测量中,给出了自混频信号功率谱密度函数的表达式并实验研究其变化规律。研究结果表明,功率谱密度展宽具有佛克脱函数的形式。激光垂直入射流动样品池时,功率谱密度得到展宽,展宽程度随着定向流速的增大或束腰半径的减小而增大。激光倾斜入射流动样品池时,功率谱密度在展宽的同时还伴随多普勒峰移,其位置随着定向流速的增大或散射矢量与定向流速之夹角的减小而迁移至高频。 Measurement of motion characteristics and parameters of nanofluid is of very importance on the research of heat transfer of nanofluid.In this paper,the laser self-mixing technique is employed to research the characteristics of nanofluid.The power spectral density(PSD)of self-mixing signal is derived theoretically and studied experimentally.It is showed that the power spectral density is in the profile of Voigt function.While the laser beam propagates along the direction perpendicular to the flow velocity,the PSD becomes wider due to the increase of the flow velocity and/or the decrease of the beam waist.If the laser beam is oblique to the flow velocity,besides the broadening of the spectrum,the PSD displays a Doppler peak whose position shifts to higher frequency as the translational flow velocity increases and/or the angle between scattering vector and flow velocity decreases.
机构地区 上海理工大学
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第7期1168-1172,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.NSFC50876069) 高等学校博士学科点专项科研基金(No.200931201100061)
关键词 纳米流体 激光自混频 功率谱密度 佛克脱函数 多普勒峰 谱线展宽 nanofluid laser self-mixing power spectral density Voigt function Doppler peak spectral broadening
  • 相关文献

参考文献16

  • 1Choi S U S. Enhancement Thermal Conductivity of Flu-ids with Nanoparticles Developments and Applications of Non-Newtonian Flows [J]. ASME, 1995, 66:99- 103.
  • 2Putnam S A, Cahill D G, Braun P V. Thermal Conduc- tivity of Nanoparticle Suspensions [J]. J Appl Phys, 2006, 99:084308- 084314.
  • 3Nguyen C T, Desgranges F, Roy G. et al. Temperature and Particle-Size Dependent Viscosity Data for Water- Based Nanofluids--Hysteresis Phenomenon [J]. Interna- tional Journal of Heat and Fluid Flow, 2007, 28:1492- 1506.
  • 4Gupta A, Kumar R. Role of Brownian motion on the thermal conductivity enhancement of nanofluids [J]. Appl Phys Lett, 2007, 91, 223102-223105.
  • 5Eastman J A, Choi S U S. Novel Thermal Properties of Nanostructured Materials [J]. Mater Sci Forum, 1999, 312- 314:629 -634.
  • 6Trisaksri V, Wongwises S. Critical Review of Heat Trans- fer Characteristics of the Nanofluids [J]. Renewable and Sustainable Energy Reviews, 2007, 11:512-523.
  • 7WANG X, Mujumdar A S. Heat Transfer Characteristics of Nanofluids: a Review [J]. Int J Thermal Sci, 2007, 46: 1 -19.
  • 8XUAN Y, LI Q. Heat Transfer Enhancement of Nanofluids [J]. Int J Heat Fluid Flow, 2000, 21:58-64.
  • 9Chowdhury D P, Sorensen C M, Taylor T W, et al. Ap- plication of Photon Correlation Spectroscopy to Flowing Brownian Motion Systems [J]. Appl Opt, 1984, 23:4149 - 4154.
  • 10Weber R, Schweiger G. Photon Correlation Spectroscopy on Flowing Polydisperse Fluid-particle Systems: Theory [J]. Appl Opt 1998, 37(18): 4039-4050.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部