期刊文献+

Lagrange四边形单位分解有限元法的最优误差分析

Optimal Error Estimates for Partition of Unity Finite Element Method on Lagrange Rectangle
原文传递
导出
摘要 用构造最优局部逼近空间的方法对Lagrange型四边形单位分解有限元法进行了最优误差分析.单位分解取Lagrange型四边形上的标准双线性基函数,构造了一个特殊的局部多项式逼近空间,给出了具有2阶再生性的Lagrange型四边形单位分解有限元插值格式,从而得到了高于局部逼近阶的最优插值误差. In this paper, by constructing a optimal local approximation space,we investigate optimal error estimates for partition of unity finite element metbod(PUFEM) on Lagrange rectangle.Using standard base functions defined on bilinear Lagrange rectangle as partition of unity ,a special polynomial local approximation space is established,then PUFEM interpolants with reproducing property of order 2 is constructed. Thereby we derive the optimal error estimates of higher order than the local approximations for PUFEM interpolants.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第12期249-258,共10页 Mathematics in Practice and Theory
基金 浙江省教育厅资助项目(Y201120196)
关键词 最优误差估计 单位分解有限元法 Lagrange四边形 optimal error estimate partition of unity finite element method Lagrange rect-angle
  • 相关文献

参考文献1

二级参考文献16

  • 1I. Babuska,U. Banerjee and J.E.Osborn, On principles for the selection of shape functions for the Generalized Finite Element Method, Comput. Methods Appl.Mech.Engrg., 191 (2002), 5595-5629.
  • 2I. Babuska, U. Banerjee and J.E.Osborn, Survey of meshless and generalized finite element methods: a unified approach, Acta Numer., (2003), 1-125.
  • 3I. Babuska and J. M.Melenk , The partition of unity finite element method, Int. J. Num. Meth.Eng., 40 (1997), 727-758.
  • 4I. Babuska, U. Banerjee and J.E.Osborn, Generalized finite element methods-main ideas, results and perspective, Int. J. Comput. Methods , 1:1 (2004), 67-103.
  • 5C. A. M. Duarte and J. T. Oden, Hp clouds-an hp meshless method, Numer. Methods Partial Different. Eqns., 12 (1996), 6?3-?05.
  • 6M. Griebel and M. A. Schweitzer, A particle-partition of unity method, Part II: Efficient cover construction and reliable integration, SIAM J. Sci.Comp., 23 (2002), 1655-1682.
  • 7M. Griebel and M. A. Schweitzer, A particle-partition of unity method, Part III: A multilever solver,SIAM J. Sci. Comp., 24 (2002), 377-409.
  • 8M. Griebel and M. A. Schweitzer, A particle-partition of unity method, Part IV: Parallelization,in: M. Griebel and M. A. Schweitzer(Eds.), Meshfree Methods for Partial differential Equations,Springer ,2002.
  • 9M. Griebel and M. A. Schweitzer, A particle-partition of unity method, Part V: Boundary conditions, in: S. Hildebrand, H.Karcher(Eds.), Geometric Analysis and Nonlinear Partial Differential Equations, Springer, 2002.
  • 10W. Han and X. Meng, Error analysis of the reproducing kernel particle method, Comput. Methods Appl.Mech.Engrg., 190 (2001), 6157-6181.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部