摘要
用构造最优局部逼近空间的方法对Lagrange型四边形单位分解有限元法进行了最优误差分析.单位分解取Lagrange型四边形上的标准双线性基函数,构造了一个特殊的局部多项式逼近空间,给出了具有2阶再生性的Lagrange型四边形单位分解有限元插值格式,从而得到了高于局部逼近阶的最优插值误差.
In this paper, by constructing a optimal local approximation space,we investigate optimal error estimates for partition of unity finite element metbod(PUFEM) on Lagrange rectangle.Using standard base functions defined on bilinear Lagrange rectangle as partition of unity ,a special polynomial local approximation space is established,then PUFEM interpolants with reproducing property of order 2 is constructed. Thereby we derive the optimal error estimates of higher order than the local approximations for PUFEM interpolants.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第12期249-258,共10页
Mathematics in Practice and Theory
基金
浙江省教育厅资助项目(Y201120196)