期刊文献+

TORA系统的控制和跟踪策略设计 被引量:1

TORA System Control and Tracking Strategy Design
原文传递
导出
摘要 通过设计具有控制参数的控制策略,针对具有旋转激励的平移振荡器系统(TORA)得出了能使系统平衡在任意设定的平衡点的方法,实现了角位移的跟踪策略.该方法将系统的能量函数分解为两个部分,通过引入控制因子修改能量函数使平衡点成为新构造的广义能量函数的极值点,并得到基于该修正能量函数的合适李亚普诺夫函数.最后,设计了满足平衡点稳定性的控制律.通过仿真,将此法与传统能量函数法以及采用滑模的控制系统进行动态性能比较,证明了此法的优越性. Aiming at the translational oscillators with rotating actuator(TORA),a method is proposed to keep the system balance in any set equilibrium point by designing a control strategy with control parameters.Based on this,the tracking strategy for angle displacement is realized.The energy function is divided into two parts by the proposed method.The equilibrium point becomes an extreme point of the new generalized energy function by inducting control factors to amend the energy function.In addition,a suitable Lyapunov function can be constructed based on this amended energy function.At last,a control law is designed to satisfy the equilibrium point stability.The dynamic performance is compared among the proposed method,traditional energy function method and the sliding mode control system by simulation,and the results show the proposed method is superior to others.
出处 《信息与控制》 CSCD 北大核心 2012年第3期314-318,共5页 Information and Control
基金 国家自然科学基金资助项目(60704045 60874115)
关键词 非线性系统 稳定性 广义能量函数 李亚普诺夫函数 nonlinear system stability generalized energy function Lyapunov function
  • 相关文献

参考文献10

  • 1Jankovic M, Fortanine D, Kokotovic P V. TORA example: Cascade and passivity-based control designs[J]. IEEE Transactions on Control Systems Technology, 1996, 4(3): 292-297.
  • 2Chwa D. Tracking control of differential-drive wheeled mobile robots using a backstepping-like feedback linearization[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40(6): 1285-1295.
  • 3Nazrulla S, Khalil H K. A novel nonlinear output feedback control applied to the TORA benchmark system[C]//Proceedings of IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 2008: 3565-3570.
  • 4高丙团.TORA的动力学建模及基于能量的控制设计[J].自动化学报,2008,34(9):1221-1224. 被引量:19
  • 5Bloch A M, Leonard N E, Marsden J E. Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem[J]. IEEE Transactions on Automatic Control, 2000, 45(12): 2253-2270.
  • 6Bloch A M, Chang D E, Leonard N E, et al. Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping[J]. IEEE Transactions on Automatic Control, 2001, 46(10): 1556-1571.
  • 7Dong E C. Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation by the energy-shaping method[J]. IEEE Transactions on Automatic Control, 2010, 55(8): 1888-1893.
  • 8李茂青.基于受控拉格朗日函数的垂直起降飞机控制器设计[J].控制理论与应用,2010,27(6):688-694. 被引量:8
  • 9许清媛,杨智,范正平,李晓东.一种非线性观测器和能量结合的反馈控制系统[J].控制理论与应用,2011,28(1):31-36. 被引量:6
  • 10Raymond P C. Numerical methods for engineers[M]. New York, NJ, USA: McGraw-Hill, 2010.

二级参考文献37

  • 1BLOCH A M,LEONARD N E,MARSDEN J E.Stabilization of mechanical systems using controlled Lagrangians[C[//Proceedings of the 36th IEEE Conference on Decision and Control.New York:IEEE,1997:2356-2361.
  • 2BLOCH A M,LEONARD N E,MARSDEN J E.Controlled Lagrangians and the stabilization of mechanical systems Ⅰ:the first matching theorem[J].IEEE Transactions on Automatic Control,2000,45(12):2253-2270.
  • 3BLOCH A M,CHANG D E,LEONARD N E,et al.Controlled Lagrangians and the stabilization of mechanical systems Ⅱ:Potential shaping[J].IEEE Transactions on Automatic Control,2001,46(10):1556-1571.
  • 4AUCKLY D,KAPITANSKI L,WHITE W.Control of nonlinear underactuated systems[J].Communications on Pure and Applied Mathematics,2000,53(3):354-369.
  • 5AUCKLY D,KAPITANSKI L.On the λ-equations for matching control laws[J].SIAM Journal on Control and Optimization,2002,41 (5):1372-1388.
  • 6CHANG D E.Controlled Lagrangian and Hamiltonian systems[D].Pasadena,California:California Institute of Technology,2002.
  • 7BROCKETr R W.Control theory and analytical mechanics[C]//HERMANN R,MARTIN C.Lie Groups:History,Frontiers,and Applications Ⅶ:Proceedings of 1976 Ames Research Center (NASA)Conference on Geometric Control Theory.Brookline,Massachusetts:Math Science Press,1976:1-46.
  • 8ORTEGA R,VAN DER SCHAFT A J,Maschke B,et al.Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J].Automatica,2002,38(4):585 -596.
  • 9ORTEGA R,SPONG M W,GOMEZ-ESTERN E et al.Stabilization of tmderactuated mechanical systems via interconnectionand damping assignment[J].IEEE Transactions on Automatic Control,2002,47(8):1218-1233.
  • 10ACOSTA J A,ORTEGA R,ASTOLFI A,et al.Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one[J].IEEE Transactions on Automatic Control,2005,50(12):1936-1955.

共引文献27

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部