摘要
一元线性回归是应用最为广泛的参数估计方法之一。文中提出一元线性回归的自变量在等差级数的基础上进行双向黄金分割,提高两端点观测值的多余观测分量,缩小观测值之间多余观测分量的差异,在不增加观测值数量和不改变观测值精度的前提下,提高稳健估计方法消除或减弱粗差的能力。
Simple linear regression is one of the most widely used methods of parameter estimation. The paper proposes a bidirectional golden section based on independent variables according to arithmetical progression, which increases the redundant observations of the observations at both endpoints and narrows the difference of redundant observations among the observations. Under the premise of not increasing the number of observations and changing observation accuracy, this method improves the capability of robust estimate method eliminating and weakening gross errors.
出处
《测绘工程》
CSCD
2012年第3期13-17,共5页
Engineering of Surveying and Mapping
基金
国家高技术研究发展计划(863计划)资助项目(2008AA06A415-06A4)
关键词
一元线性回归
稳健估计
自变量优化
双向黄金分割
simple linear regression
robust estimation
independent variables optimization
bidirectional golden section