期刊文献+

一种PCB表观检查机的无阴影高均匀照明方法 被引量:1

A shadow-free and uniform illumination method for automatic visual inspection of printed circuit boards
原文传递
导出
摘要 印刷电路板(PCB)表观检查机的检测算法,对亮度不均的阴影条纹的原始图像难以处理,最终影响PCB的检测性能。本文基于实验图像阴影条纹的形成机理,提出一种无阴影高均匀的PCB表观检查机照明方法。本方法采用4个荧光灯组成,其中两个光源与物面的镜面方向对称,用于高反射照明;另外两个光源用于漫反射照明。仿真和实验表明,本方法可以消除高反射曲面引起的图像阴影条纹,在PCB表观检查机系统中达到均匀照明效果且增强缺陷和背景的对比度。本方法也可应用于类似的高反射曲面的自动表观检查系统,如铝带缺陷检查,塑料薄膜缺陷检查等。 Unevenly distributed color image and image shadow of the pads on printed circuit board (PCB) are problems in an automatic visual inspection system. This makes it difficult for material classification and local threshold determination. In this paper, an illumination method with high uniformity by using four fluorescent lamps is proposed to eliminate the image shadow for the inspection of printed circuit board. The simulation and experimental results indicate that the method is appropriate in removing the image shadow of PCB image. Furthermore,this method can enhance the image contrast, so defects are also detectable. This method can be also applicable in other specular non-planar surface inspection systems.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第7期1279-1284,共6页 Journal of Optoelectronics·Laser
基金 粤-港关键领域重点突破(20091683)资助项目
关键词 印刷电路板(PCB) 图像阴影 照明设计 自动表观检查 均匀照明 printed-circuit-board (PCB) image shadow illumination design automatic visual inspection uniform illumination
  • 相关文献

参考文献17

  • 1Seulin R, Merienne F,Gorria P. Dynamic lighting system for specular surface inspection[J]. Machine Vision Appli- cations in Industrial Inspection IX, 2001,4301 (1) : 199- 206.
  • 2Caulier Y. Inspection of complex surfaces by means of structured light patterns[J]. Optics Express, 2010,18 ( 7 ) : 6642-6660.
  • 3Yoshino K, Miwa M, Kanamaru A, et al. An automatic through-hole inspection system by analyzing laser diffrac- tion pattern[A]. IEEE. Proceedings of SICE Annual Con- ference 2010 [C]. Washington DC: IEEE Press, 2010, 2155-2160.
  • 4Institute of Printed Circuits, IPC-A-6OOG.. Acceptability of printed boards [M]. Lakeside, USA.. Institute of Printed Circuits, 2004,29-31.
  • 5Perng D, Chou C, Lee S. Illumination system for wire bonding inspection[J]. Applied Optics, 2007,46 (6) : 845- 854.
  • 6Ibrahim A,Tominaga S, Horiuchi T, Material classification for printed circuit boards by spectral imaging system[J]. Computational Color Imaging, 2009,5646 :216-225.
  • 7Markus Jehle,Christoph Sommer, Bernd Jahne. Learning of Optimal Illumination for Material Classification[J]. Pat- tern Recognition, 2010,6376 :563-572.
  • 8Han H,Sohn K, Automatic illumination and color compen- sation using mean shift and sigma filter[J]. IEEE Trans. on Consumer Electronics, 2009,55(3) : 978-986.
  • 9吴逢铁,黄启禄.A precise model of LED lighting and its application in uniform illumination system[J].Optoelectronics Letters,2011,7(5):334-336. 被引量:21
  • 10Steger C, Ulrich M,Wiedemann C. Machine vision algo- rithms and applications [M]. Weinheim: Wiley-VCH, 2008,152-170.

二级参考文献13

  • 1J. K. Kim and E. F. Schubert, Optics Express 16, 21835 (2008).
  • 2YANG Guang-hua, MAO Lu-hong, HUANG Chun-hong, WANG Wei and GUO Wei-lian, Optoelectronics Letters 6, 0015 (2010).
  • 3ZHOU Long-zao, LIU Hui, AN Bing, WU Feng-shun and WU Yi-ping, Journal of Optoelectronics · Laser 21, 175 (2010) (in Chinese).
  • 4Panlai Li, Zhijun Wang, Zhiping Yang, QJnglin Guo, Xu Li, Journal of Luminescence 130, 222 (2010).
  • 5Soon Ok Jeon, Kyoung Soo Yook and Jun Yeob Lee, Synthetic Metals 160, 39 (2010).
  • 6N. Yeh and J. P. Chung, Renewable and Sustainable Energy Reviews 13, 2175 (2009).
  • 7Borbely and S. G. Johnson, Optical Engineering 44, 111308 (2005).
  • 8C. C. Sun, T. X. Lee, S. H. Ma, Y, L. Lee and S. M. Huang, Optics Letters 31, 2193 (2006).
  • 9LI Xian-rui, WANG Song-lin, LAI Xin-quan and LI Yu-shan, Optoelectronics Letters 5, 186 (2009).
  • 10HUANG Qi-lu and WU Feng-tie, Acta Optica Siniea 30, 3039 (2010). (in Chinese).

共引文献20

同被引文献25

  • 1R. M. Wasserman, A. D. Silber. Optimization of multiple-source illumination for machine vision inspection via visual simulation [C]. SPIE, 2002, 4772: 37-46.
  • 2W. Zhou, A. C. Bovik, H. R. Sheikh et al.. Image quality assessment: from error visibility to structural similarity [J]. IEEE Trans. Image Processing, 2004, 13(4): 600-612.
  • 3A. Ibrahim, S. Tominaga, T. Horiuchi. Material classification for printed circuit boards by spectral imaging system [J]. LNCS, 2009, 5646: 216-225.
  • 4B. M. Barnes, R. Quinthanilha, Y. Sohn et al.. Optical illumination optimization for patterned defect inspection [C]. SPIE, 2011, 7971: 79710D.
  • 5N. Ko, Y. Lee, S. Jung et al.. Computational imaging in machine vision system for automated optical inspection [C]. Computational Optical Sensing and Imaging, 2009. JTuC13.
  • 6R. Gruna, J. Beyerer. Feature-specific illumination patterns for automated visual inspection [C]. IEEE International Instrumentation and Measurement Technology Conference, 2012. 360-365.
  • 7C. Chen, R. Hwang, Y. Chen. A passive auto-focus camera control system [J]. Applied Soft Computing, 2010, 10(1): 296-303.
  • 8C. Wang, B. C. Jiang, Y. Chou et al.. Multivariate analysis-based image enhancement model for machine vision inspection [J]. International J. Production Research, 2011, 49(10): 2999-3021.
  • 9D. Tsai, H. Tsai. Low-contrast surface inspection of mura defects in liquid crystal displays using optical flow-based motion analysis [J]. Machine Vision and Applications, 2011, 22(4): 629-649.
  • 10G. Tzimiropoulos, V. Argyriou, S. Zafeiriou et al.. Robust FFT-based scale-invariant image registration with image gradients [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2010, 32(10): 1899-1906.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部