期刊文献+

基于特征点不确定性加权误差的位姿估计新方法 被引量:8

A new pose estimation method based on uncertainty-weighted errors of the feature points
原文传递
导出
摘要 计算机视觉中一般是利用优化技术最小化目标函数来估计位姿,目标函数通常是由图像平面上特征点重投影误差构成,并且假设测量噪声是各向同性且独立同分布的高斯噪声,所得到的位姿是在该假设条件下的极大似然最优估计。然而,在实际应用中这种假设并不总是成立,测量噪声通常是各向异性且非独立同分布,而且常常具有很强的方向性。为此,本文提出了一种新的特征点位姿估计方法,首先对特征点的方向不确定性建模,然后将方向不确定性融入到重投影误差中,构造基于不确定性加权误差的新目标函数,最后利用Levenberg-Marquardt算法优化目标函数求解位姿。大量实验结果表明,本方法可以适应不同程度的方向不确定性,精度优于现有迭代方法。而且随着不确定性的增加,位姿解的精度并没有明显变差。 Pose estimation problem in computer vision is often solved by minimizing cost functions that combine the reprojection errors in the 2D images,but the cost functions are based on the assumption that measurement noises are isotropic, independent and identically distributed (i. i. d. ) at every 2D feature point, so the solution of pose becomes statistically meaningful and optimal in the sense of maximum like- lihood. However, this assumption is rarely the ease in real applications, where the positional noise not only varies at different features, but also has strong directionality. In this situation, we propose a new pose estimation method that incorporates the directional uncertainty of the points into reprojection errors and constructs a new uncertainty-weighted cost function. The method can adapt to varying degrees of directional uncertainty and guarantee more accurate results. In particular, unlike other reprojection-error-based methods,our method does not degrade with increase in directionality of uncertainty. Finally we demonstrate the effectiveness of the method by experiments on synthetic data that contains high directional uncertainty.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第7期1348-1355,共8页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(51005229)资助项目
关键词 位姿估计 PNP问题 方向不确定性 不确定性加权误差 pose estimation perspective-n-point (PnP) problem directional uncertainty uncertaintyweighted error
  • 相关文献

参考文献2

二级参考文献30

  • 1徐巧玉,王恒迪,车仁生.立体视觉测量系统中三维拼接技术的研究[J].光电子.激光,2009,20(10):1332-1336. 被引量:7
  • 2吕乃光,王永强,邓文怡,董明利,王君,潘志康.航天器薄膜充气天线面形的视觉测量方法[J].光电子.激光,2007,18(6):714-716. 被引量:3
  • 3Lowe D G. Fitting parameterized three-dimensional models to images[J].IEEE Trans. On pattern analysis and machine intelligence, 1991,13(5) :441-450.
  • 4Sarkis M, Diepold K, Hper K. A fast and robust solution to the five-point relative pose problem using Gauss-Newton optimization on a manifold[A]. IEEE International Conference on Acoustics, Speech, and Signal Process (ICASSP)[C].2007,681- 684.
  • 5DeMenthon D F,Davis L S. Model-based object pose in 25 lines of code[A]. International Journal of Computer Vision[C].1995,123-141.
  • 6Gramegna T,Venturino L,Oicirelli G. Optimization of the POSIT algorithm for indoor autonomous navigation[J].Robotics and Autonomous Systems,2004,48(2-3) : 145-162.
  • 7Conte D, Foggia P, Sansone C, et al. Thirty years of graph matching in pattern recognitien[J].International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18 (3) : 265- 298.
  • 8Zhao C, Shi W, Deng Y. A new Hausdorff distance for image matching[J]. Pattern Recognition Letters, 2005,26 : 581-586.
  • 9Fischler M A,Bolles R C. Random Sample Consensus:A paradigm for model fitting with applications to image, Analysis and Automated Cartography[J].Communications of the ACM, 1981,24(6) :381-395.
  • 10Robert Cupec, Andreja Kitanov, Ivan Petrovic. Stereo image registration based on RANSAC with selective hypothesis generation[A].edited by Luis Basanz, Raulsuarez and Jan Rosell. Proceedings book of 40th International Symposium on Robotics[C]. 2009,265-270.

共引文献25

同被引文献70

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部