期刊文献+

涡旋膨胀机发电系统效率优化控制策略 被引量:2

Efficiency Optimization Control Strategy of Scroll Expander Generator System
下载PDF
导出
摘要 提出了以最小压缩气体消耗为涡旋膨胀机发电系统效率优化的目标,采用了基于系统损耗模型优化和在线搜索相结合的转速寻优策略,有效避免寻优初值的随机性及参数变化对优化结果的影响。针对气动系统非线性、滞后性及负载不确定性所致的发电系统强非线性的特点,采用了供气压力反馈线性化的补偿控制和PI速度控制相结合的控制策略,对优化速度快速无静差跟踪。试验结果表明,控制策略可实现速度的快速寻优以及优化速度的快速跟踪,实现了减小压缩气体消耗的目标。 The minimum air consumption as the efficiency optimization target for scroll expander generator system is first proposed and the optimization method combining the loss model method with the online search method is adoptd in this paper, which is profitable to avoid the adverse effect caused by the randomness of initialization and the change of conditions. In view of the nonlinearity characteristic of the power generation system due to nonlinearity the pneumatic system and randomness of load, the control strategy combining compensation control based on supply pressure feedback linearization and speed PI tracking control is used. It is effective to compensate for nonlinearity of supply pressure and tracking without steady-state error of optimal speed. The experimental results indicate that the optimal control strategy is effective for speed optimization and tracking, and the goal of minimum air consumption can be achievd.
出处 《电工技术学报》 EI CSCD 北大核心 2012年第6期25-31,共7页 Transactions of China Electrotechnical Society
基金 国家高技术研究发展计划(863计划)(2009AA05Z212) 国家自然科学基金(51107069) 山东大学自主创新基金自然科学类专项交叉学科培育(2009JC009)资助项目
关键词 废气能量回收 涡旋膨胀机 最小压缩气体消耗 效率优化 反馈线性化 Exhaust energy recovery, scroll expander, minimum air consumption, efficiency optimization, feedback linearization
  • 相关文献

参考文献28

  • 1The Energy Resources Center of the Illinois Industryof the Future. available at: http: //www.erc. uic.edu/iof/c-omp air.html, viewed 20th February 2010.
  • 2Belforte G. New developments and new trends in pneumatics[C]. The 6th International Symposium on Flow Control, Measurements and Flow Visualization, 2000.
  • 3Denise CRE, AMB, Jorge AST. An overview on the current processes for recycling of batteries[J]. Journal of Power Sources, 2004, 135(2): 311-319.
  • 4Arsie I V M, et al. A model of a hybrid power plant with wind turbines and compressed air energy storage[C]. Proceedings of American Society of Mechanical Engineers Power Conference, 2005: 5-7.
  • 5Lemofouet S, Ruler A. A hybrid energy storage system based on compressed air and supercapacitors with maximum efficiency point tracking[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1105-1115.
  • 6Luo Xing, Sun Hao, Wang Jihong. An energy efficient pneumatic-electrical system and control strategy development[J]. Proceedings of the American Control Conference, 2011: 4743-4748.
  • 7Yanagisawa T, Fukuta Y, Ogi T, et al. Performance of an oil-free scroll-type air expander[C]. International Conference on Compressors and Their Systems, 2001: 167-174.
  • 8Gao Xiaojun, Li Liansheng, Zhao Yuanyang, et al. Research on a scroll expander used for recovering work in a fuel cell[J]. International Journal of Thermodynamics, 2004, 7(1): 1-8.
  • 9Yang L, Wang J, Mangan S. Mathematical model and energy efficiency analysis Of a scroll-type air motor[J]. International Journal of Applied Mathematics, 2008, 38(1), 14-19.
  • 10Zhao Yuanyang, Li Liansheng, Shu Pengcheng. Thermodynamic simulation of scroll compressor expander module in automotive fuel cell engine[J]. Journal of Automobile Engineering, 2006, 220(5): 571-577.

二级参考文献53

  • 1J T Bialasiewicz. The wind farm aggregation impactan power quality[C]. Proceedings of the 32th Annual Conference of IEEE Industrial Electronics Society, Paris, France, 2006: 4195-4200.
  • 2Lemofouet S. A hybrid energy storage system based on compressed air and supercapacitors with maximum efficiency point tracking[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1105-1115.
  • 3N G Boulaxisn, M P Papathnassiou SA Papadopou- losmp. Wind turbine effect on the voltage profile of distribution networks[J]. Renewable Energy, 2002, 25(3): 401-415.
  • 4Denise Crocce Romano Espinosa, Andrea Moura Bernardes, Jorge Alberto Soares Tenoio. Anoverview on the current processes for recycling of batteries[J]. Journal of Power Sources, 2004, 135(2):311-319.
  • 5Arsie I, Marano V, Nappi G. A model of a hybrid power plant with wind turbines and compressed airenergy storage[C]. Proceedings of PWR2005 ASMEPower, Chicago, Illinois, 2005:1-14.
  • 6Wang Baolong, Li Xianting, Shi Wenxing. A general geometrical model of scroll compressors based ondiscretional initial angles of inyolute[J]. International Journal of Refrigeration, 2005, 28(6): 958-966.
  • 7Yu Chen, N P Halm. Mathematical modeling of scroll compressors-part I: compression process modeling[J].International Journal of Refrigeration, 2002, 25(6):731-750.
  • 8Hyun Jin Kim, Jong Min Ahn, Sung Oug Cho,et al. Numerical simulation on scroll expander compressorunit for CO2 trans critical cycles[J]. Applied ThermalEnginering, 2008, 28(13): 1654- 1661.
  • 9Eric Winandy, Claudio Saavedra O, Jean Lebrun. Experimental analysis and simplified modeling of a hermetic scroll refrigeration compressor[J]. AppliedThermal Enginering, 2002, 22(2): 107-120.
  • 10Yanagisawa T. Optimum operating pressure ratio for scroll compressor[C]. Proceedings of the International Compressor Engineering Conference, Purdue, 1990:425-433.

共引文献79

同被引文献17

  • 1Vongmanee V, Monyaku! V. A Modeling of Self Excit- ed Induction Generators Driven by Compressed Air En- ergy Based on Field Oriented Control Principle [ C ]. IEEE 2rid International Conference on Power and Ener- gy, Johor Baharu, Malaysia, 1-3 December, 2008: 834 - 838.
  • 2Saadat M, Li P Y. Modeling and Control of a Novel Compressed Air Energy Storage System for Offshore Wind Turbine [ C ]. 2012 American Control Confer- ence, Montreal, QC, 27 -29 June, 2012:3032 - 3037.
  • 3Dahraie M V, Najafi H R, Azizkandi R N. Study on Compressed Air Energy Storage Coupled With a Wind Farm [ C]. 2012 Second Iranian Conference on Renew- able Energy and Distributed Generation, Tehran, Iran, 6-8 March, 2012:147-152.
  • 4Martlnez M, Molina M G, Mercado P E. Dynamic Performance of Compressed Air Energy Storage (CAES) Plant for Applications in Power Systems [ C ]. 2010 IEEE/PES Transmission and Distribution Conference and Exposition, Latin America, Sao Paulo, 8 - 10 Nov., 2010:496-503.
  • 5Hasan N S, Hassan M Y, Majid M S, et al. Mathe- matical Model of Compressed Air Energy Storage in Smoothing 2MW Wind Turbine [ C]. 2012 IEEE Inter- national Power Engineering and Optimization Confer- ence, Melaka, Malaysia, 6- 7 June, 2012: 339 - 343.
  • 6Grazzini G, Milazzo A. A Thermodynamic Analysis of Multistage Adiabatic CAES [ C ]. Proceedings of the IEEE, 2012, 100 (2): 461-472.
  • 7卢强.浅谈压缩空气储能一专访中国科学家卢强院士[N].中国能源报,2012—06—02.
  • 8胡长庆,师学峰,张玉柱,王子兵.烧结余热回收发电关键技术[J].钢铁,2011,46(1):86-91. 被引量:13
  • 9褚晓广,张承慧,李珂,荆业飞.基于涡旋机的新型压缩空气储能系统动态建模与效率分析[J].电工技术学报,2011,26(7):126-132. 被引量:11
  • 10赵岩,王亮,陈海生,刘佳,盛勇,杨亮,谭春青.填充床显热及相变储热特性分析[J].工程热物理学报,2012,33(12):2052-2057. 被引量:19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部