期刊文献+

板式固体氧化物燃料电池的热应力分析 被引量:8

Analysis on Thermal Stress of a Planar Solid Oxide Fuel Cell
下载PDF
导出
摘要 为了深入掌握固体氧化物燃料电池(SOFC)的结构性能,进而提高其可靠性,在对SOFC的内部流动和电化学特性进行数值模拟,对顺流和逆流两种流动情况下板式SOFC内温度分布、电势特征和电流密度特征进行分析的基础上,将数值计算得到的温度场作为载荷施加到SOFC的热应力模型中,建立了数值模拟SOFC的有限元热应力模型,对SOFC关键结构中的三合一电极板中的热应力分布特征进行了分析研究.研究结果表明:相对于顺流形式,逆流形式燃料入口附近的温度梯度要大得多;材料间热膨胀系数的不匹配导致了热应力的产生;热应力的大小与温度分布和温度梯度密切相关.由于过大的热应力可能会导致SOFC结构开裂甚至破坏,该研究工作为SOFC单电池和电池堆的设计优化提供了重要的理论依据. A thermal stress finite element model for a planar solid oxide fuel ceil (SOP'C;) was established to study the structural performance of SOFC and improve its reliability. Numerical simulations for both co-flow and counter-flow planar SOFCs were performed by coupling the SOFC electrochemical model with the Naive-Stokes equations. The distribution characteristics of temperature, electric potential and current density were analyzed based on the simulation results. The distribution characteristics of thermal stress in the SOFC positive electrode-electrolyte- negative electrode were investigated using the developed SOFC thermal stress finite-element model. The simulation results indicate that the temperature gradient near the fuel entrance for the counter-flow pattern is much greater than that for the co-flow pattern. The thermal stress is mainly attributed to the mismatches of coefficients of thermal expansion between different materials and is closely related to the temperature gradient and distribution. The thermal stress may lead to cracks and destroy the SOFC structure. This research provides theoretical basis for design and optimization of the SOFC cell and stack.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第7期75-81,共7页 Journal of Xi'an Jiaotong University
关键词 固体氧化物燃料电池 数值模拟 电化学 热应力 solid oxide fuel cell numerical simulation electrochemical thermal stress
  • 相关文献

参考文献12

  • 1MALZBENDER J, STEINBRECH R W. Advanced measurement techniques to characterize thermomechanical aspects of solid oxide fuel cells [J]. Journal of Power Sources, 2007, 173(1): 60-67.
  • 2YAKABE H, BABA Y, SAKURAI T, et al. Evaluation of the residual stress for anode-supported SOFCs [J]. Journal of Power Sources, 2004, 135(1/2) : 9-16.
  • 3FERGUSON J R, FIARD J M, HERBIN R. Threedimensional numerical simulation for various geometries of solid oxide fuel cells [J]. Journal of Power Sources, 1996, 58(2).. 109-122.
  • 4YAKABE H, OGIWARA T, HISHINUMA M, et al. 3-D model calculation for planar SOFC [J]. Journal of Power Sources, 2001, 102(1/2): 144-154.
  • 5SELIMOVIC A, KEMM M, TORISSON T, et al. Steady state and transient thermal stress analysis in planar solid oxide fuel cells [J]. Journal of Power Sources, 2005, 145(2): 463-469.
  • 6WElL K S, KOEPPEL B J. Thermal stress analysis of the planar SOFC bonded compliant seal design [J]. International Journal of Hydrogen Energy, 2008, 33 (14) : 3976-3990.
  • 7JIANG T L, CHEN M-H. Thermal-stress analyses of an operating planar solid oxide fuel cell with the bond- ed compliant seal design [J]. International Journal of Hydrogen Energy, 2009, 34(19): 8223-8234.
  • 8ZHANG X, LI G, LI J, et al. Numerical study on electric characteristics of solid oxide fuel cells [J]. Energy Conversion and Management, 2007, 48(3) : 977-989.
  • 9CHAN S H, KHOR K A, XIA Z T. A complete polarization model of a solid oxide fuel cell and its sensi-tivity to the change of cell component thickness [J]. Journal of Power Sources, 2001, 93(1/2): 130-140.
  • 10COSTAMAGNA P, HONEGGER K. Modeling at solid oxide heat exchanger integrated stacks and simulation at high fuel utilization [J]. Journal of the Electrochemical Society, 1998, 145(11): 3995-4007.

二级参考文献19

  • 1Chyou Y P, Chung T D. J. Power Sources, 2004, 139: 126-140.
  • 2Recknagle K P, Williford R E, Chick L A, et al. J. Power Sources, 2003, 113: 109-114.
  • 3Khaleel M A, lin Z, Singh P, et al. J. Power Sources, 2004,130: 136-148.
  • 4Haberman B A, Young J B. J. Power Sources, 2004, 47:3617-3629.
  • 5Iwata M, Hikosaka T, Morita M, et al. Solid State lonics,2000, 132: 297-308.
  • 6Yakabe H, Sakurai T. Solid State Ionics, 2004, 174: 295-302.
  • 7Bove R, Lunghi P, Nigel M S. L J. Hydrogen Energy, 2005,30: 181-187.
  • 8Lu Yixin, Schaefer L, Li P. J. Power Sources, 2005, 140:331-339.
  • 9Padulles J, Ault G W, McDonald J. R. J. Power Sources,2000, 86: 495-500.
  • 10Stiller C, Thorud B, Seljebo S, et al. J. Power Sources,2005, 141: 227-242.

共引文献4

同被引文献44

  • 1赵月晶,乐恺,闫小克,张欣欣.水热管等温特性的数值模拟分析[J].化工学报,2011,62(S2):61-67. 被引量:6
  • 2程健,郭烈锦,许世森,张瑞云,李晨.熔融碳酸盐燃料电池双极板数值模拟[J].中国电机工程学报,2011,31(S1):239-243. 被引量:1
  • 3李莉.氨与燃料电池[J].能源技术,2005,26(3):102-105. 被引量:7
  • 4孙西芝,陈时锦,程凯,初文江.多尺度仿真方法研究综述[J].系统仿真学报,2006,18(10):2699-2702. 被引量:6
  • 5陈弦,杨杰,蒲健,李箭.平板式SOFC结构热应力的有限元分析[J].无机材料学报,2007,22(2):339-343. 被引量:5
  • 6Huang Biao,Qi Yutong,Murshed Monjur.Solid oxidefuel cell:Perspective of dynamic modeling and control[J].Journal of Process Control,2011,21(10):1426-1437.
  • 7Surdoval W.Clean economic energy in a carbonchallenged world[A].IOth Annual Solid State EnergyConversion Alliance(SECA)Workshop[C].USA,2009.
  • 8Ferguson J R,Fiard J M,Herbin R.Three-dimensional numerical simulation for various geometriesof solid oxide fuel cells[J].Power Sources,1996,58(2):109-122.
  • 9Yakabe H,Hishinuma M,Uratani M,et al.Evaluation and modeling of performance of anode-supported solid oxide fuel cell[J].Power Sources,2000,86(1-2):423-31.
  • 10Khaleel M A, Rector D R, Lin Z, et al. Multiscale electrochemistry modeling of solid oxide fuel cells [ J ]. International Journal for Multiscale Computational Engineering, 2005, 3(1): 33-47.

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部