期刊文献+

水平轴潮汐透平场的数值研究 被引量:6

Numerical Investigation of Horizontal Axis Tidal Turbine Farm
下载PDF
导出
摘要 为了研究水平轴潮汐透平的动力性能及透平周围流场的结构,在叶素理论(BE)、激盘模型和计算流体动力学(CFD)的基础上建立了一种可以计算潮汐透平动力性能和流场特征的BE+CFD方法,并在3种工况不同尖速比(TSR)下对透平的功率系数CP和轴向推力系数CT进行了计算,计算结果与实验结果吻合良好,表明所提方法是有效的.在此基础上,对单机透平周围流场进行了模拟,进而分析了透平下游流场的速度分布及透平阵列中横向距离对CP和CT的影响,结果显示:透平下游8倍直径中心处的流场速度值为入口速度时的86%;横向距离对CT影响较小;横向距离减小时CP呈增加趋势.该结果可为水平轴潮汐透平场设计提供理论参考. In order to study the dynamic performance of a horizontal axis tidal turbine and the structure of the flow field around it, a BEq-CFD method was developed on the basis of the blade element theory, the actuator disc model and CFD techniques. The power coefficient Cp and the axial thrust coefficient CT for the turbine were computed at three tip speed ratios (TSR). The predicted results agree well with the experimental data. Then, the simulation on the flow field around the turbine was performed, and the downstream velocity distribution of the turbine and the influence of lateral distance on Cp and CT were analyzed. The results show that the center flow velocity located at the place with a distance of eight times the rotor diameter behind the tur- bine downstream is about 860//oo of the inlet velocity. The discussion on the relationship between the lateral distance and CT, Cp shows that the lateral distance has slight impact on CT, and Cp in- creases with the decrease in the lateral distance.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第7期98-102,共5页 Journal of Xi'an Jiaotong University
关键词 潮汐透平 计算流体动力学 叶素理论 激盘模型 tidal turbine computational fluid dynamics blade element theory actuator disc model
  • 相关文献

参考文献12

  • 1LIU Liqun, LIU Chunxia, SUN Zhiyi, et al. The development and application practice of neglected tidal energy in China [J]. Renewable and Sustainable Energy Reviews, 2011, 15(2) :1089-1097.
  • 2VERMEER L J, SOERENSEN J N, CRESPO A. Wind turbine wake aerodynamics [J]. Progress in Aerospace Sciences, 2003, 39(6):467-510.
  • 3O'DOHERTY T, MASON-JONES A, O' DOHERTY D M, et al. Experimental and computational analysis of a model horizontal axis tidal turbine[C]//Proceedings of the 8th European Wave and Tidal Energy Conference. Uppsala, Sweden: IET Renewable Power Generation, 2009:833-841.
  • 4O' DOHERTY D M, MASON-JONES A, O' DOHERTY T, et al. Considerations of improved tidal stream turbine performance using double rows of contra-rotating blades[C] // Proceedings of the 8th European Wave and Tidal Energy Conference. Uppsala, Sweden: IET Renewable Power Generation, 2009:434 -442.
  • 5中国风能技术开发中心.大型风力机设计手册[EB/OL].[20ll-08-01].http://www.dianjiarLnet/?action-viewth-read-tid-147736.
  • 6BAHAJ A S, MOLLAND A F, CHAPLIN J R, et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank[J]. Renewable Energy, 2007, 32(3):407-426.
  • 7MIKKELSEN R. Actuator disc method applied to wind turbines [D]. Asmussens Alle, Denmark.. Technical University of Denmark, 2003.
  • 8MOLLAND A F, BAHAJ A S, CHAPLIN J R, et al. Measurements and predictions of forces, pressures and cavitation on 2-D sections suitable for marine current turbines [J]. Proceedings of the Institution of Mechanical Engineers: Part M Journal of Engineering for the Maritime Environment, 2004, 218 (2): 127- 138.
  • 9SHEN Wenzhong, MIKKELSEN R, SRENSEN J N. Tip loss corrections for wind turbine computations[J]. Wind Energy, 2005, 8(4):457-475.
  • 10Fluent Inc. FLUENT6.2 UDF manual [M]. New York, USA.. Fluent Inc. , 2005.

同被引文献59

  • 1徐文,李建龙,李一平,陈惠芳,杨绍琼,曾俊宝,王延辉.无人潜水器组网观测探测技术进展与展望[J].前瞻科技,2022(2):60-78. 被引量:13
  • 2TURNOCK S, PHILLIPS A, BANKS J, et al. Modelling tidal current turbine wakes using a coupledRANS-BEMT approach as a tool for analysing powercapture of arrays of turbines [J]. Ocean Engineering,2011, 38(11):1300-1307.
  • 3LI Y, CALLSAL S. Modeling of twin-turbine systemswith vertical axis tidal current turbine: Part I Pow-er output [J]. Ocean Engineering, 2010,37(7) : 627-637.
  • 4LEE S,LEE S, JANG K, et al. A numerical studyfor the optimal arrangement of ocean current turbinegenerators in the ocean current power parks [J]. Cur-rent Applied Physics, 2010, 10(2) : 137-141.
  • 5JOURIEH M,KUSZLA P, DOBREV I,et al. Hy-brid rotor models for the numerical optimization ofwind turbine farms [C]//1st International Symposiumon Environment Identities and Mediterranean Area.Piscataway, NJ,USA: IEEE, 2006 : 173-177.
  • 6BATTEN WMJ, BAHAJ A S,MOLLAND A F,etal. The prediction of the hydrodynamic performance ofmarine current turbines [J]. Renewable Energy,2008, 33(5):1085-1096.
  • 7SHEN Zhongwen, MIKKELSENR,S0RENSEN JN. Tip loss corrections for wind turbine computations[J]. Wind Energy, 2005,8(4):457-475.
  • 8MENTER F R. Tow-equation eddy-viscosity turbu-lence models for engineering applications [J]. AIAAJournal, 1994, 32(8) : 1598-1605.
  • 9MENTER F R, KUNTZ M,LANGTRY R. Tenyears of industrial experience with the SST turbulencemodel [J]. Turbulence Heat and Mass Transfer, 2003(4):625-632.
  • 10BAHAJ A S,MOLLAND A F,CHAPLIN J R, et al.Power and thrust measurements of marine current tur-bines under various hydrodynamic flow conditions in acavitation tunnel and a towing tank [Jj. RenewableEnergy, 2007, 32(3):407-426.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部