期刊文献+

强Rasmusen智猪公理系统的最可能局势 被引量:8

Most Probable Situations in Strong Rasmusen Axiom System for Boxed Pigs
原文传递
导出
摘要 基于Rasmusen原始智猪博弈模型,由引进大小猪的跑速、吃速、投食量和槽板距等指标和即喷公理、弱和平公理、强成本公理、强跑速公理和吃速公理,建立了所谓强Rasmusen智猪公理系统。给出最优局势分布公式,得到当成本和槽板距充分小时,最可能两猪都踏;当成本足够大时,最可能大猪独踏的结论。作为应用,引进一种所谓Rasmusen技术创新模型,举例说明了计算这种模型中各局势的概率和如何控制此概率的问题。 By introducing running velocity, eating velocity, quantity of food into the trough(QFT) and distance between trough and panel (DTP) and so on and the axioms of instant appear, weak peace, strong cost, strong running velocity, and eating velocity, a so-called strong Rasmusen axiom system for games of boxed pigs is set, based on Rasmusen's primitive model. The formula of optimal situation distributin is given. The conclusions are proved that the two pigs pressing together is most probable when the cost and DTP are sufficiently small and that the big one pressing alone is also most probable when the cost is sufficiently great. A so-called Rasmusen technology innovation game model is introduced as an application of this theory. An example shows how analyti~ the situations in Rasmusen technology innovation model and control the situation.
作者 姜殿玉
出处 《系统工程》 CSSCI CSCD 北大核心 2012年第5期96-100,共5页 Systems Engineering
基金 国家自然科学基金资助项目(70871051)
关键词 强Rasmusen智猪公理系统 投食量 槽板距 最可能局势 Rasmusen技术创新博弈模型 Strong Rasmusen Axiom System for Boxed Pigs Quantity of Food into the Trough Distance between theTrough and the Panel Most Probable Situation Rasmusen Technology Innovation Game Model
  • 相关文献

参考文献10

  • 1Baldwin B A, Meese G B. Social behavior in pigs studied by means of operant eonditioning[J]. Animal Behavior, 1979,27(3) : 947-957.
  • 2Rasmusen E. Games and information: An introduc- tion tO game theory [M]. New York: Wiley- Blackwell, 1989.
  • 3张维迎.博弈论与信息经济学[M].上海:上海三联书店、上海人民出版社,2003..
  • 4Aumann R J. Correlated equilibrium as an expression of Bayesian rationality[J]. Econometrica, 1974,55 : 1-18.
  • 5Jiang D Y. Situation analysis of double action games with entropy [M]. New York: Science Press USA Inc, 2010.
  • 6姜殿玉.一类双行动对称三人博弈的局势分析法[J].系统工程学报,2011,26(5):608-613. 被引量:4
  • 7Jiang D Y. Situation analysis of boxed pigs games[C] // The 2nd International Conference on E-Business and E-Government, 2011 : 1574-1576.
  • 8Jiang D Y. Analysis of optimal situation distributions in a 2 X 2 hi-matrix game[J]. International Journal of Innovative Computing, Information and Control, 2010,6 (7) : 3229-3238.
  • 9Thomas L C. Games, theory and applieations[M]. Chichester : Ellis Horwood Limited, 1984.
  • 10Schelling T C. The strategy of conflict [M ]. Cambridge : Harvard University Press, 1980.

二级参考文献13

  • 1Aumann R J. Correlated equilibrium as an expression of Bayesian rationality[J]. Econometica, 1987, 55(1): 1 - 8.
  • 2Kuhn H. An algorithm for equilibrium points in bimatrix games[J]. National Academy of Sciences Proceedings, 1961, 479(8): 1657 - 1662.
  • 3Jansen M J M. Equilibria and optimal threat strategies in two-person games[D]. Nethrlands: Katholieke Nijmegen University, 1981.
  • 4van Damme E E C. Stability and Perfection of Nash Equilibria[M]. New York: Springer-Verlag, 1991.
  • 5Evangelista F, Raghavan T. A note on correlated equilibrium[J]. International Journal of Game Theory, 1996, 25(1): 35 -41.
  • 6Berger A, Della P, Della P V. A maximum entropy approach to natural language processing[J]. Computational Linguistics, 1996, 22(1): 39 - 71.
  • 7Francis B, Bhaskar D. Correlated equilibria, incomplete information and coalitional deviations [J]. Games and Economic Behavior, 2009, 66(2): 721 - 728.
  • 8Indrajit R. Correlated equilibrium as a stable standard of behavior[J]. Review of Economic Design, 1998, 3(3): 257 - 269.
  • 9Hart S, Mas-Colell A. A simple adaptive procedure leading to correlated equilibrium [J]. Econometrica, 2000, 68(5): 1127 - 1150.
  • 10Roman S. Coding and Information Theory[M]. New York: Springr -Verlag, 1992.

共引文献122

同被引文献67

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部