期刊文献+

随机微分方程改进半隐Milstein方法的稳定性(英文) 被引量:3

Stability of Improved Semi-implicit Milstein Methods for Stochastic Differential Equations
下载PDF
导出
摘要 研究了随机微分方程改进的半隐Milstein方法的均方稳定和渐近稳定性.对线性检验方程,得到了改进的半隐Milstein方法对任意步长Δt>0均方稳定的充要条件是3/4≤θ≤1.证明了当方法的步长充分小时,方法能保持原系统的渐近稳定性. This paper gives investigation of mean - square and asymptotic stability of improved semi - implicit Milstein methods for stochastic differential equations. It is shown that the improved semi - implicit Milstein methods recovered the mean- square stability properties of the linear test equation, if and only if 3/4 ≤ θ ≤ 1. For asymptotic stability, we proved that the methods can reproduce the stability of the test problem provided that the stepsize is sufficiently small.
作者 李启勇
机构地区 怀化学院数学系
出处 《怀化学院学报》 2012年第5期1-6,共6页 Journal of Huaihua University
基金 湖南省教育厅青年项目(11B095)
关键词 半隐Milstein方法 随机微分方程 均方稳定 渐近稳定 semi- implicit Milstein methods stochastic differential equations mean square stability asymptoticstability
  • 相关文献

参考文献10

  • 1Kloeden P E, Platen E. Numerical Solution of Stochastic Differential Equations [M]. Berlin: Springer, 1992.
  • 2Milstein G N, Tretyakov M V. Stochastic Numerics for Mathematical Physics [M]. Berlin: Springer, 2004.
  • 3Platen E. An introduction to numerical methods for stochastic differential equations [J]. Acta Numer. 1997, 8: 197- 246.
  • 4Higham D J, Mao Xuerong, Stuart A M. Strong convergence of Euler- type methods for non- linear stochastic diffrential equations [J]. SIAM J. Numer. Anal. 2002, 40: 1041- 1063.
  • 5Saito Y, Mitsui T. Stability analysis of numerical schemes for stochastic differential equations [J]. SIAM J. Numer. Anal. 1996, 33: 2254 - 2267.
  • 6Higham D J. Mean- square and asymptotic stability of the stochastic theta method [J]. SIAM J. Numer. Anal. 2000, 38:753 - 769.
  • 7Higham D J. A- stability and stochastic mean- square stability [J]. BIT. 2000, 40: 404- 409.
  • 8Higham D J, Mao Xuerong, Stuart A M. Exponential mean - square stability of numerical solutions to stochastic differential equations [J]. LMSJ. Comput. Math. 2003, 6: 297-313.
  • 9Wang Zhiyong, Zhang Chengjian. An analysis of stability of Milstein method for stochastic differential equations with delay [J]. Comput. Math. Appl. 2006, 51: 1445--1452.
  • 10Buckwar E, Sickenberger T. A comparative linear mean - square stability analysis of Maruyama - and Milstein - type methods [ J ]. Math. Comput. Simulation. 2011, $1: 1110-1127.

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部