期刊文献+

公众出行信息服务多源数据融合挖掘技术研究

Study on multi-source data fusion mining technology for public-travel traffic information service
下载PDF
导出
摘要 分析了公众出行信息特征及影响出行线路选择的因素,设计了多源交通数据融合挖掘的系统框架,并研究了其中的多源数据相关度计算、层次化子空间聚类及联合聚类挖掘等关键技术。理论分析及实验结果表明,系统对于多源交通数据的融合分析及高维数据的降维聚类具有良好的处理能力及可扩展性。 The features of public-travel traffic information and the impact factors of travel mute se- lection were analysed. A multi-source traffic data fusion mining system framework was designed. A series of key technologies, which include the correlation degree analysis of multi-source data, the hierarchical sub-spatial clustering and co-clustering mining analysis, were studied. The theoretical analysis and field test results show that the system has good processing ability and scalability for multi-source data fusion analysis and dimension reduction.
作者 廖律超
出处 《福建工程学院学报》 CAS 2012年第3期266-270,共5页 Journal of Fujian University of Technology
基金 福建省科技计划重点项目(2011H0002) 福建省交通科技计划项目(201122)
关键词 公众出行信息服务 多源交通数据 数据融合聚类 数据挖掘分析 public-travel traffic information service multi-source traffic data fusion clustering datamining analysis
  • 相关文献

参考文献11

  • 1陈超,吕植勇,付姗姗,彭琪.国内外车路协同系统发展现状综述[J].交通信息与安全,2011,29(1):102-105. 被引量:88
  • 2P-DRGS协会.基于浮动车数据的城市交通信息系统评价--深圳市先进交通信息系统一期工程评价议案[R].名古屋:名古屋大学,2006.
  • 3Srinivasan K, and Jovanis P. Determination of Number of Probe Vehicles Required for Reliable Travel Time[ R]. Measure- ment in Urban Network. Transportation Research Record, No. 1537 ,TRB. Washington: National Research Council, 1996.
  • 4Sen A, Thakuriah P, Kaxr A, et al. Frequency of Probe Reports and Variance of Travel Time Estimation [ J ]. Journal of Transportation Engineering, 1997,123 (4) :290 - 297.
  • 5Fouladvand M E, Darooneh A H ,Statistical analysis of floating-car data:an empirical study[ J ]. The European Physical Jour- nal B---Condensed Matter and Complex Systems ,2005,47 (2) :319 -328.
  • 6Liu K, Yamamoto T, Morikawa T. Study on the Cost-Effectiveness of Probe Vehicle System at Lower Polling Frequencies [ J ]. International Journal of ITS Researoh ,2008 ,6 ( 1 ) :29 - 36.
  • 7郭继孚,刘梦涵,等.北京市交通拥堵宏观评价指标体系开发及其应用[C]//2007第三届中国智能交通年会学术委员会.2007第三届中国智能交通年会论丈集.南京:东南大学出版社,2007:341-346.
  • 8乐耀佳,许建华.一种高维数据集的子空间聚类算法[J].南京师范大学学报(工程技术版),2009,9(3):55-63. 被引量:2
  • 9张原,高向阳.数据挖掘中分类算法分析与量化研究[J].西北工业大学学报,2008,26(6):718-722. 被引量:8
  • 10李良群,姬红兵.基于最大熵模糊聚类的快速数据关联算法[J].西安电子科技大学学报,2006,33(2):251-256. 被引量:14

二级参考文献54

  • 1Agrawal R,Gehrke J,Ounopulos D.Automatic subspace clustering of high dimensional data for data mining applications[C]//Proceedings of the 1998 ACM-SIGMOD International Conference on Management of Data.Seattle,Washington:ACM Press,1998,6:94-105.
  • 2Grunwald P D.Model selection based on minimum description length[J].Journal of Mathematical Psychology,2000,44:133-152.
  • 3Cheng C H,Fu A W-C,Zhang Y.Entropy-based subspace clustering for mining numerical data[C]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Diego,USA:ACM Press,1999:84-93.
  • 4Nagesh H,Coil S,Choudhary A.Adaptive grids for clustering massive data sets[C]//Proceedings of SIAM International Conference on Data Mining.SIAM,2001:477-493.
  • 5Kailing K,Kriegel H-P,Kroger P.Density-connected subspace clustering for high-dimensional data[C]//Proceedings of the 4th SLAM International Conference on Data Mining.Lake Buena Viata,FL,2004:246-257.
  • 6Procopiuc CM,Jones M,Agarwal P K,et al.A monte carlo algorithm for fast projective clustering[C]//Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data.Madison:ACM Press,2002:418-427.
  • 7Glomba M,Urszula M-K.IBUSCA:a grid-based bottom-up subspace clustering algorithm[C]//Proceedings of the 6th International Conference on Intelligent Systems Design and Applications.USA:IEEE Computer Society,2006:671-676.
  • 8Aggarwal C C,Procopiuc C,Wolf J L,et al.Fast algorithms for projected clustering[C]//Proceedings of the 1999 ACM SIG-MOD International Conference on Management of Data.New York:ACM Press,1999:61-72.
  • 9Aggarwal C C,P S Yu.Finding generalized projected clusters in high dimensional spaces[C]//Proceedings of the 2000 ACM SIGMOD international conference on Management of data.Oallas,Texas:ACM Press,2000:70-81.
  • 10Liu J,Strohmaier K,Wang W.Revealing true subspace clusters in high dimensions[C]// Proceedings of the 4th IEEE International Conference on Data Mining.USA:IEEE Computer Society,2004:463-466.

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部