期刊文献+

基于虚拟仪器的智能电子鼻系统的设计 被引量:1

Design of Intelligent Electronic Nose System Based on Virtual Instrument
下载PDF
导出
摘要 智能电子鼻对于有害气体和可燃性气体的检测具有重要意义;以NI公司Labview9.0为测试平台,利用PCI-1710HG数据采集卡、传感器阵列设计构成智能电子鼻系统;采用测量室和气体流量计精密控制气体密度和状态;虚拟仪器开发平台用于实时监测和显示采集得到的曲线和数据,并通过遗传算法改进后的BP神经网络进行分析,得到不同气体的浓度;最后使用不同阻值的精密电阻替代传感器对系统进行测试,结果表明系统对多种气体检测都具有高精度和高稳定性,能够进行高效智能化检测。 It is important for intelligent electronic nose to detect harmful gases and combustible gases. The intelligent electronic nose system based on labviewg. 0, PCI-1710HG data acquisition card and sensor array is designed. Measuring room and the gas flow meter are used to control the density and state of the gas precisely. The real--time monitoring, the displaying of collection curve and data are based on virtual instrument development platform LabVIEW, and it is combined with the improved BP neural network to analysis and get the concentrations of different gases. At last sensor array is replaced by different value of precision resistance to test the accuracy and stability of the system. The results show that the system has high precision and high stability with variety of gases detection and can detect effectively and intelligently.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第6期1596-1598,1605,共4页 Computer Measurement &Control
关键词 传感器阵列 模式识别 神经网络 匹配电阻 sensor array, pattern recognition, neural network, matched resistant
  • 相关文献

参考文献9

  • 1杨建华,侯宏,王磊,刘福.基于集成气体传感器阵列的电子鼻系统[J].传感器技术,2003,22(8):21-23. 被引量:19
  • 2徐毓龙,徐玉成.电子鼻的研究和开发现状[J].传感器世界,1999,5(8):1-5. 被引量:3
  • 3D. C. Dyer, J. W. Gardner. High-precision intelligent inter- face for a hybrid electronic nose [J]. Sensors and Actuators A, 1997, 62: 724-728.
  • 4G. C. Cardinali, A smart sensor system for carbon monoxide detection [J]. Analog Integrated Circuits and Signal Processing, 1997, 14: 275-296.
  • 5Ederth J, Smulko J M, Kish L B, et al. Comparison of classical and fuctuation-enhanced gas sensing with PdxWO3 nanoparticle rims,[J].Sensors and Actuators B, vol. 2006, 113: 310-315.
  • 6B. K. Min and S. D. Choi, Undoped and 0.1wt% Ca-doped Pt- catalyzed SnO2 sensors for CH4 detection [J], Sensors and Actuators B, 2005, 108:119-124.
  • 7B. Bahrami, A. Khodadadi, M. Kazemeini, and Y. Mortazavi, En- hanced CO sensitivity and selectivity of gold nanoparticles doped SnO2 sensor in presence of propane and methane [J]. Sensors and Actuators B, 2008, 133: 352-356.
  • 8Yoland G. M, Concepcion C O, Jose P P, et al. Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterization of vegetable oils [J]. Analytica Chimica Acta, 2001, 449:69-80.
  • 9Parekh R, Yang J, Honavar V. Constructive neural-network learning algorithms for pattern classification[J].IEEE Trans. Neural Networks, 2000, 11:436-450.

二级参考文献2

共引文献19

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部