期刊文献+

一种粒子滤波自适应优化算法

A kind of adaptive optimization algorithm for particle filter
下载PDF
导出
摘要 通过对粒子滤波算法中建议分布与重采样2种改进技术分析,提出了一种粒子滤波自适应优化算法.首先,基于退火参数自适应优化混合建议分布,以改进建议分布的采样范围.然后,在基于有效样本大小的自适应重采样技术之上,借助另一多样性测度即种群多样性因子来自适应调整重采样阈值,而且,样本变异操作在重采样之后被引入确保样本的多样性.同时,结合部分分层重采样算法研究并进行改进,改进的部分分层重采样算法具有原算法执行快时间短的优点,同时结合权重优化的思想改进重采样的样本权重计算.通过仿真实验,粒子滤波自适应优化算法的性能和有效性均得以验证. By analyzing two techniques, namely, proposal distribution and resampling, an adaptive optimiza- tion algorithm for particle filter is presented. Firstly, hybrid proposal distribution is adaptively optimized based on anneal parameter in order to improve the sampling range of proposal distribution, se'condly, based on the a- daptive resampling techniques on effective sample size, auother diversity measure, namely population factor, is used to adaptively adjust the resampling threshold. Moreover, the particle mutation operation is integrated into PF after resampling so as to ensure the diversity of particle sets. finally, an improved partial stratified re- sampling (PSR) algorithm in PF is studied, which keeps the advantage of PSR in implementation speed and time and improves the pefrmance of PF with weight optimization. Throngh simulation experiments, validity of the proposed method is verified.
作者 李明理
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2012年第2期201-206,共6页 Journal of Henan Polytechnic University(Natural Science)
基金 国家创新方法工作专项(2010IM020500-JD05)
关键词 粒子滤波 自适应优化 退火参数 混合建议分布 多样性测度 重采样阈值 particle filter adaptive optimization anneal parameter hybrid proposal distribution diversity meas-ure resampling threshold
  • 相关文献

参考文献9

  • 1GORDON N J, SALMOND D J, SMITH A F M. No- vel approach to nonlinear/non- Gaussian Bayesian state estimation [ J ]. IEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
  • 2DOUCET A, GODSILL S J, ANDRIEU C. On se- quential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistics and Computing, 2000, 10 ( 3 ) : 197 -208.
  • 3ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/ non - GaussianBayesian tracking [ J ] . IEEE Transac- tions on Signal Processing, 2002, 50(20) : 174-188.
  • 4于金霞,蔡自兴,段琢华.基于粒子滤波的移动机器人定位关键技术研究综述[J].计算机应用研究,2007,24(11):9-14. 被引量:13
  • 5LIU J S. Metropolized independent sampling with com- parisons to rejection sampling and importance sampling [J]. Statistics and Computing, 1996, 6 ( 1 ) : 113- 119.
  • 6DOUC R, CAPPPE O, MOULINES E. Comparison of resampling schemes for particle filtering [ C ]// Pro- ceedings of Image and Signal Processing and Analysis. Zagreb : IEEE Press, 2005 : 64-69.
  • 7BOLIC M, DJURIC P, HONG SANGJIN. New resam- pling algorithms for particle filters [ C ]// Proceedings of the 2003 International Conference on Acoustics, Speech, and Signal Processing. HongKong: IEEE Press, 2003: 589-592.
  • 8YU JINXIA, TANG YONGLI, LIU WENJING. Re- search on diversity measure in particle filter [ C ]// Proeeedings of the International Conference on Intelli- genee Computation Technology and Automation. Chan- gsha: IEEE Press, 2010: 1146-1149.
  • 9谌剑,严平,张静远.权值优化组合粒子滤波算法研究[J].计算机工程与应用,2009,45(24):33-35. 被引量:13

二级参考文献63

  • 1莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3厉茂海,洪炳熔,蔡则苏.一种新的移动机器人全局定位算法[J].电子学报,2006,34(3):553-558. 被引量:10
  • 4赵梅,张三同,朱刚.辅助粒子滤波算法及仿真举例[J].北京交通大学学报,2006,30(2):24-28. 被引量:14
  • 5邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 6COX I J.Blanche:an experiment in guidance and navigation of an autonomous robot vehicle[J].IEEE Transactions on Robotics and Automation,1991,7(2):193-204.
  • 7FOX D,BURGARD W,THRUN S.Markov localization for mobile robot in dynamic environments[J].Journal of Artificial Intelligence Research,1999,11(1):391-427.
  • 8LEONARD J J,DURRANT-WHYTE H F.Mobile robot localization by tracking geometric beacons[J].IEEE Transactions on Robotics and Automation,1991,7(3):376-382.
  • 9FOX D.Markov localization:a probabilistic framework for mobile robot localization and navigation[D].Bonn,Germany:University of Bonn,1998.
  • 10JENSFELT P,CHRISTENSEN H I.Active global localization for a mobile robot using multiple hypothesis tracking[J].IEEE Transactions on Robotics and Automation,2001,17(2):748-760.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部