期刊文献+

GNRFET双极特性及工作区域研究 被引量:2

Study on Bipolar Characteristics and Operation Regions of GNRFETs
下载PDF
导出
摘要 石墨烯器件作为下一代纳米电子器件的有力竞争者受到广泛关注,但对其器件工作机理的研究尚不透彻。对石墨烯纳米带场效应晶体管(graphene nanoribbon field effect transistor,GNRFET)的双极特性进行了研究,分析了偏置电压对GNRFET转移特性和输出特性的影响,发现除已被关注到的栅电压外,源漏电压对GNRFET的双极特性亦有作用,并将两者综合考虑才能全面反映GNRFET的工作状态。在此基础上,进一步提出了工作区域的概念,将GNR-FET的工作区域划分为空穴导电区、电子导电区、转变区和截止区,为GNRFET器件的应用和电路设计提供指导。 As an excellent candidate of next generation nano-electronic devices, graphene devices are attracted intensive interest. However, many researches about the mechanism of graphene de- vices remain unclear. Bipolar characteristic of the graphene nanoribbon field effect transistor (GNRFET) was researched, and the influence of the bias voltage on the transfer and output charac- teristics of the GNRFET was analyzed. It is demonstrated that besides the gate voltage, the drain- source voltage has a strong effect on the bipolar characteristic. To describe the GNRFETs" beha- vior integrally, two kinds of biases must be taken into account together. The concept of the operation region was further proposed. The operation regions of the GNRFET are divided to four parts, as the hole conduction region, electron conduction region, conversion region and cut-off region. The presented analytical investigation can be applied to direct the GNRFETs" design and applications.
出处 《微纳电子技术》 CAS 北大核心 2012年第7期438-443,477,共7页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(60976067) 高等学校博士点专项科研基金资助项目(20100141120040 20110141120074) 中央高校基本科研武汉大学资助项目(1101001)
关键词 石墨烯纳米带场效应晶体管(GNRFET) 双极特性 转移特性 输出特性 工作区域 graphene nanoribbon field effect transistor (GNRFET) bipolar characteristic transfer characteristic output characteristic operation region
  • 相关文献

参考文献12

  • 1NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
  • 2HAN M Y,ZYILMAZ B,ZHANG Y,et al.Energy band-gap engineering of graphene nanoribbons[J].Physical Re-view Letters,2007,98(20):206805-206809.
  • 3LI X,WANG X,ZHANG L,et al.Chemically derived ultra-smooth graphene nanoribbon semiconductors[J].Science,2008,319(5867):1229-1232.
  • 4NOVOSELOV K S,JIANG D,SCHEDIN F,et al.Two-di-mensional atomic crystals[J].Proceedings of the NationalAcademy of Sciences of the United States of America,2005,102(30):10451-10453.
  • 5MERIC I,HAN M Y,YOUNG A F,et al.Current satura-tion in zero-bandgap,top-gated graphenefield-effect transistors[J].Nat Nano,2008,3(11):654-659.
  • 6KEDZIERSKI J,PEI-LAN H,REINA A,et al.Graphene-on-insulator transistors made using C on Ni chemical-vapordeposition[J].Electron Device Letters,IEEE,2009,30(7):745-747.
  • 7CHEN Z,LIN Y M,ROOKS M J,et al.Graphene nano-rib-bon electronics[J].Physica:E,2007,40(2):228-232.
  • 8YIJIAN O,YOUNGKI Y,GUO J.Scaling behaviors of gra-phene nanoribbon FETs:a three-dimensional quantum simula-tion study[J].IEEE Transactions on Electron Devices,2007,54(9):2223-2231.
  • 9SON Y W,COHEN M L,LOUIE S G.Energy gaps in gra-phene nanoribbons[J].Physical Review Letters,2006,97(21):216803-216806.
  • 10YAN Q,HUANG B,YU J,et al.Intrinsic current-voltage cha-racteristics of graphene nanoribbon transistors and effect ofedge doping[J].Nano Letters,2007,7(6):1469-1473.

同被引文献11

  • 1刘帘曦,杨银堂,朱樟明,付永朝.基于Verilog-A行为描述模型的VCO设计[J].电路与系统学报,2005,10(6):25-28. 被引量:7
  • 2ITRS. International technology roadmap for semiconductors [EB/OL]. (1999- 07- 08)[2013- 06- 28]. http: // www. itrs. net.
  • 3YAN Q, HUANG B, YU J, et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping [J]. Nano Letters, 2007, 7 (6) : 1469- 1473.
  • 4HUANG B, YAN Q, ZHOU G, et al. Making a field effect tran- sistor on a single graphene nanoribbon by selective doping [J]. Ap- plied Physics Letters, 2007, 91 (25) : 253122 1 - 253122-3.
  • 5WANG Z F, SHI Q W, LI Q. Z-shaped graphene nanoribbon quantum dot device [J]. Applied Physics Letters, 2007, 91 (5) : 053109-1 - 053109 3.
  • 6NOVOSEI.OV K S, GEIM A K, MOROZOV A V, et al. Electric field effect in atomically thin carbon films [J]. Scienee, 2004, 306: 666-669.
  • 7PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physics Review Letters, 1996, 77 (18): 3865-3868.
  • 8SON Y W, COHEN M L, LOUIE S G. Energy gaps in gra- phene nanoribbons [J]. Physical Review Letters, 2006, 97 (21) : 216803- 216806.
  • 9HAN M Y, OZYILMAZ B, ZHANG Y, et al. Energy band gap engineering of graphene nanoribbons [J]. Physics Review Letters, 2007, 98 (20) : 206805 - 206809.
  • 10JAVEY A, GUO J, DAMON B, et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-K gate dielectrics [J].Nano Letters, 2004, 4 (3): 447 - 450.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部