期刊文献+

中间带太阳电池进展 被引量:1

Progress in Intermediate Band Solar Cells
下载PDF
导出
摘要 中间带太阳电池是第三代光伏发电研究中很热门的研究领域之一。论述了中间带太阳电池的原理,以及实现中间带材料的三种方法,即量子点中间带电池、杂质带电池、高失配合金。量子点中间带太阳电池的红外吸收测量证实中间带太阳电池的基本原理是正确的。介绍了为提高短路电流,采用应力补偿技术,增加量子点层数,增大量子点的吸收系数。目前量子点中间带太阳电池的效率达到18%。阐述了杂质带的机理,研究表明,当Si中掺Ti浓度超过Mott相变浓度时,杂质抑制非辐射复合,有效载流子寿命增加。高失配合金具有不寻常的能带结构,AlGaN材料的带隙接近中间带的理想值,很可能成为下一个研究的热点。 The intermediate band solar cell (IBSC) is one of the popular research fields in the study of the third generation photovoltaics. The principle of the IBSC is discussed, and the three methods to realize intermediate band material, including quantum dot intermediate, impurity in- termediate band, and highly mismatched alloys, are also discussed. Proved by the infrared ab- sorption measurement of the quantum dot IBSC, the IBSC basic principle is correct. In order to improve the short circuit current, the stress compensation technology is adopted, the layer num- ber and absorption coefficient of the quantum dot are increased. The efficiency of the quantum dot IBSC is 18% at present. The mechanism of the impurity band is discussed, the research shows that when the Ti-impurity concentration in Si is beyond the Mott phase change concentration, the impurity restrains the nonradiative recombination, and the effective carrier lifetime is increased. The highly mismatched alloy exhibits unusual energy band structure. The band gap of A1GaN is very close to the optimum value of the intermediate band, so it will be the next research hot spot.
出处 《微纳电子技术》 CAS 北大核心 2012年第7期444-448,490,共6页 Micronanoelectronic Technology
基金 北京信息科技大学专业建设(理学类)基金资助项目(71M1110821)
关键词 中间带 量子点 高失配合金 太阳电池 杂质带 intermediate band quantum dot highly mismatched alloy solar cell impurity band
  • 相关文献

参考文献45

  • 1BROWN G F,WU J Q.Third generation photovoltaics[J].Laser&Photo Rev,2009,3(4):394-405.
  • 2KING R R,LAW D C,EDMONDSON K M,et al.40%effi-cient metamorphic GaInP/GaInAs/Ge multijunction solar cells[J].Appl Phys Lett,2007,90(18):183516-1-183516-3.
  • 3MARTI A,ANTOLIN E,CANOVAS E,et al.Elements ofthe design and analysis of quantum-dot intermediate band solarcells[J].Thin Solid Films,2008,516(20):6716-6722.
  • 4CONIBEER G,EKINS-DAUKES N,GUILLEMOLES J F,etal.Progress on hot carrier cells[J].Solar Energy Materialsand Solar Cells,2009,93(6/7):713-719.
  • 5SHALAV A,RICHARDS B S,GREEN M A.Luminescentlayers for enhanced silicon solar cell performance:up-conver-sion[J].Solar Energy Materials and Solar Cells,2007,91(9):829-842.
  • 6SHOCKLEY W,QUEISSER H J.Detailed balance limit of ef-ficiency of p-n junction solar cells[J].Journal of Applied Physics,1961,32(3):510-519.
  • 7LUQUE A,MARTI A.Increasing the efficiency of ideal solar cells by photon induced transition at intermediate levels[J].Phys Rev Lett,1997,78(26):5014-5017.
  • 8LUQUE A,MARTI A.The intermediate band solar cell:progress toward the realization of an atrractive concept[J].Advanced Materials,2010,22(2):160-174.
  • 9TABERO C.Survey of intermediate band materials candidates[J].Solid State Communications,2005,133(2):97-101.
  • 10TABERO C.Survey of intermediate band materials based on ZnS and ZnTe semiconductors[J].Solar Energy Materials and Solar Cells,2006,90(5):588-596.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部