期刊文献+

从稀疏到结构化稀疏:贝叶斯方法 被引量:27

From Sparsity to Structured Sparsity: Bayesian Perspective
下载PDF
导出
摘要 稀疏分解算法是稀疏表达理论和压缩感知理论中的核心问题,也是当前信号处理领域的一个热门话题。近年来,研究人员发现除了稀疏以外,如果引入稀疏系数之间的相关性先验信息,可以大大提高稀疏分解算法的精度,这种方法称为"结构化稀疏分解算法"。本文归纳和总结了从稀疏到结构化稀疏的信号模型,并且介绍了两种不同的贝叶斯稀疏(或者结构化稀疏)算法,以及从稀疏到结构化稀疏贝叶斯稀疏分解算法的扩展。同时,本文还介绍了结构化稀疏分解算法在医学信号处理和语音信号处理中的应用。 Sparse decomposition algorithm is one of the hottest research topic in signal processing field and plays an important role in sparse representation and Compressive Sensing(CS).Recently,beside sparsity,the structures that describes the dependencies of sparse coefficients has been exploited to improve the accuracy of sparse decomposition algorithms.It is called structured sparse decomposition algorithms.This paper will review the sparse signal model and structured sparse signal model.After that,two sparse decomposition algorithms based on Bayesian framework are introduced and their extensions to structured sparse signals are addressed.At last,the applications of structured sparsity in medical signal processing and audio signal processing are respectively demonstrated.
出处 《信号处理》 CSCD 北大核心 2012年第6期759-773,共15页 Journal of Signal Processing
关键词 压缩感知 稀疏理论 结构化稀疏分解算法 贝叶斯压缩感知 Compressive Sensing Sparsity Structured sparse decomposition algorithms Bayesian Compressive Sensing
  • 相关文献

参考文献85

  • 1Donoho D L. Compressed Sensing [ J ]. IEEE T. Inform. Theory. ,2006,52(4) : 1289-1306.
  • 2Candies E J ,Wakin M B. An Introduction To Compressive Sampling[J]. IEEE Signal. Proc. Mag. ,2008,25(2) : 21-30.
  • 3Unser M. Sampling-50 Years after Shannon [ J ]. Proceed- ings of the IEEE, 2000,88 (4) : 569 -587.
  • 4DeVore R A, Jawerth B, Lucier B J. Image compression through wavelet transform coding [ J ]. IEEE Transactions on Information Theory, 1992,38 (2) :719-746.
  • 5Fadili M J, Starck J L, Bobin J, et al. Image decomposi- tion and separation using sparse representations: An over- view [ J ]. Proceedings of the IEEE, IEEE, 2010,98 (6) : 983 -994.
  • 6Bertalmio M, Vese L, Sapiro G, et al. Simultaneous Struc- ture and Texture Image Inpainting [ J ]. IEEE T. Image. Process. ,2003,12 ( 8 ) :882- 889.
  • 7Elad M, Starck J-L, Querre P, et al. Simultaneous Cartoon and Texture Image Inpainting using Morphological Compo- nent Analysis (MCA) [ J]. Applied and Computational Harmonic Analysis ,2005,19 ( 3 ) :340-358.
  • 8Huang K, Aviyent S. Sparse Representation for Signal Classification [ C ]////NIPS. 2007 : 609 - 616.
  • 9Huang T. Linear spatial pyramid matching using sparse coding for image classification [ C ] ff 2009 IEEE Confer- ence on Computer Vision and Pattern Recognition. IEEE, 2009 : 1794-1801.
  • 10Wright J, Yang A Y, Ganesh A, et al. Robust Face Recogni- tion via Sparse Representation [ J ]. IEEE T. Pattern. An- al. ,2009,31 (2) :210-227.

同被引文献274

引证文献27

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部