期刊文献+

托普利兹矩阵在压缩多径信道估计中的应用 被引量:3

Toeplitz Matrix for Compressed Multipath Channel Sensing
下载PDF
导出
摘要 可靠的无线通信需要准确地知道下层信道的信息,因此需要进行信道估计。而许多真实信道表现为仅有一些相对较少的非零信道系数的稀疏多径信道。对于稀疏多径信道的估计,传统方法例如最小二乘法,没有利用稀疏信道本身的低维度特性,所需训练序列的长度较长,因此估计代价较大。基于压缩感知的信道估计方法,利用稀疏先验信息,能较大地缩短所需训练序列的长度,获得较好的估计效果。该文结合压缩感知观测矩阵的特点,证明了当训练序列的长度不长于信道冲激响应的长度,且托普利兹观测矩阵的行数小于列数时,观测矩阵仍然满足有限等距性质;明确提出了稀疏多径信道估计中所使用的观测矩阵的构造条件。实验结果验证了这种优化了的托普利兹观测矩阵的可行性和实用性。 Reliable wireless communication often requires accurate knowledge of the underlying channel,so the channel estimation is needed.Many real-world channels tend to exhibit sparse multipath channels characterized by a relatively small number of nonzero channel coefficients.For sparse multipath channel estimation,conventional methods,such as the least squares,do not use the inherent low-dimension characteristics of these sparse channels,and the required length of the training sequence is comparatively long,so their estimation cost is comparatively large.The channel estimation method based on compressed sensing is able to take full advantage of the prior information of sparsity to obtain a better estimate with greatly reduced length of the training sequence.Combining the characteristics of the compressed sensing measurement matrix,it proves that when the length of the training sequence is not longer than the length of the channel impulse response and the number of rows is smaller than the number of columns in the Toeplitz measurement matrix,the measurement matrix still satisfies the restricted isometry property;and it proposes specific requirements of the matrix structure for the measurement matrix used in sparse multipath channel estimation.Simulation results verify the feasibility and practicality of the optimized measurement matrix.
出处 《信号处理》 CSCD 北大核心 2012年第6期879-885,共7页 Journal of Signal Processing
基金 国家自然科学基金重点项目(批准号:60933012)
关键词 信道估计 稀疏多径信道 压缩感知 观测矩阵 托普利兹矩阵 有限等距性质 channel estimation sparse multipath channel compressed sensing measurement matrix Toeplitz matrix restricted isometry property
  • 相关文献

参考文献13

  • 1M. Kocic, D. Brady, and M. Stojanovic. Sparse equaliza- tion for real-time digital underwater acoustic communica- tions [ C ]. Proc. OCEANS ' 95,0ct. 1995,3 : 1417-1422.
  • 2W. F. Schreiber. Advanced television systems for terres- trial broadcasting: Some problems and some proposed so- lutions [ C]. Proc. IEEE, Jun. 1995,83(6) :958-981.
  • 3A. F. Molisch. Uhrawideband propagation channels-theo- ry, measurement, and modeling [ J]. IEEE Transactions on Vehicular Technology, Sep. 2005,54 ( 5 ) : 1528-1545.
  • 4D. L. Donoho. Compressed sensing [ J ]. IEEE Transactions on Information Theory, Apr. 21306,52(4) : 1289-1306.
  • 5E. J. Cands. The restricted isometry property and its im- plications for compressed sensing [ J ]. C. R. Acad. Sci. Paris, Mar. 2008, Ser. I 346:589-592.
  • 6R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted isometry property for ran- dom matrices [ J ]. Constructive Approximation, 2008, 28:253-263.
  • 7W. U. Bajwa, J. Haupt, G. Raz, and R. Nowak. Com- pressed channel sensing [ C ]. Proc. 42nd Annu. Conf. Information Sciences and Systems, Princeton, NJ, Mar.2008:5-10.
  • 8W.U. Bajwa, J. Haupt, G. Raz, S. Wright, and R. Nowak. Toeplitz-structured compressed sensing matrices [ C ]. Proc. 14th IEEE/SP Workshop on Statistical Sig- nal Processing, Madison, WI, Aug. 2007:294-298.
  • 9J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak. Toeplitz compressed sensing matrices with applications to sparse channel estimation [ J ]. IEEE Transactions on Informa- tion Theory, Nov. 2010,56 ( 11 ) :5862-5875.
  • 10E. J. Cands and M. B. Wakin. An introduction to com- pressive sampling [ J ]. IEEE Signal Processing Maga- zine, Mar. 2008,25 (2) : 21-30.

同被引文献25

  • 1Candes E J. Compressive sampling[C] // Proceedingson the International Congress of Mathematicians. Ma-drid, Spain: European Mathematical Society, 2006 :1433-1452.
  • 2Donoho D L. Compressed sensing[J].IEKE Transac-tions on Information Theory,2006,52(4) :489-509.
  • 3Strohmer T. Measure what should he measured : Pro-gress and challenges in compressive sensing[J3. Sig-nal Processing Letters, 2012 . 19(12) : 887-893.
  • 4Candes E. Romberg J. Tao T. Robust uncertaintyprinciples: Exact signal reconstruction from highlyincomplete frequency information [J], IEEE Transac-tions on Information Theory, 2006. 52(2) . 489-509.
  • 5Hilbert A,Indyk P. Sparse recovery using sparsematrices[Jj. Proceeding of the IEEK, 2010, 98(6):937-947.
  • 6Haupt J. Toeplitz compressed sensing matrices withapplications to sparse channel estimation [ J ].IEEETransactions on Information Theory. 2010. 56( 11 ):5862-5875.
  • 7Sanandaji H M, Vincent T L. Wakin M B. Concen-tration of measure inequalities for Toeplitz matriceswith applications [ J ].IEF2E Transactions on SignalProcessing. 2013, 61(1): 109-117.
  • 8Bajwa W U,Haupt J D,Raz G M, et al. Toeplitz-structured compressed sensing matrices[C] // SSPy 07.IEEE/SP 14th Workshop on IEEE. USA: IEEE,2007: 294-298.
  • 9Candes E,Tao T. Near optimal signal recovery fromrandom projections: Universal encoding strategies...IEEE Transactions on Information Theory, 2006,52(12):5406 - 5425.
  • 10Tropp J, Gulbert A. Signal recovery from randommeasurements via orthogonal matching pursuit [J].IEEE Transactions on Information Theory, 2007,53(12): 4655-4666.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部