期刊文献+

评价新型稳定同位素赖氨酸标记在定量蛋白质组学中的应用 被引量:1

Evaluation of isotopic labeling of lysine residues of peptides for quantitative proteomics
原文传递
导出
摘要 为了评价基于2-甲氧基-4,5-二氢-1氢-咪唑稳定同位素试剂在定量蛋白质组学中的应用价值,合成了轻型(D0)和重型(D4)的2-甲氧基-4,5-二氢-1氢-咪唑,通过对标准蛋白BSA酶解后产物的标记确认标记反应的特异性,并观察了标记物在MALDI-TOF-MS和LC-ESI-MS中定量的准确性,标记肽在串联质谱中的离子特点,以及对反相液相色谱行为的影响。结果表明,2-甲氧基-4,5-二氢-1氢-咪唑只与酶解后的肽段赖氨酸侧链氨基反应,具有良好的标记特异性;差异表达蛋白的定量可以通过MALDI和ESI电离模式实现;标记肽的串联质谱主要产生y离子,测序更为简便;反相液相色谱可以保持较好的分离效果,氘原子的引入不会影响保留时间,侧链修饰可以用于涉及液相色谱分离的蛋白质组学技术。2-甲氧基-4,5-二氢-1氢-咪唑稳定同位素试剂可以用于定量蛋白质组学。 To evaluate the reagent 2-methoxy-4,5-dihydro-lH-imidazole used for isotopic labeling in quantitative proteomics, we synthesized 2-methoxy-4,5-dihydro-lH-imidazole and its tetradeuterated analog in three steps. Prior to tryptic cleavage, bovine serum albumin (BSA) was reduced and alkylated. Tryptic peptides were derivatized with an equal volume of either DO or D4 and D4-derivatized peptides were mixed with at variable ratio (from 10:1 to 1:5) prior to MS and MS/MS analysis. We used Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS) and Electro Spray Ionization-Mass Spectrometry (ESI-MS) to evaluate the quantitative capability of labeling. The specificity of the reagent is excellent: only lysine side chains were modified among tryptic peptides. MALDI and ESI ionization modes not only could achieve the quantification of differentially expressed proteins but also facilitate the de novo sequencing. This side-chain modification can be used for quantitative analysis with proteomic strategies involving liquid chromatography. Reverse phase liquid chromatography (RPLC) kept a good resolution, and the introduction of D atoms did not introduce a variation of retention time between heavy and light peptides in RPLC.
出处 《生物工程学报》 CAS CSCD 北大核心 2012年第7期855-864,共10页 Chinese Journal of Biotechnology
基金 国家重点基础研究发展计划(973计划)(No.2011CB9106) 国家自然科学基金(No.81101636)资助~~
关键词 稳定同位素标签 质谱 定量蛋白质组学 咪唑 stable isotope coding tag, mass spectrometry, differential proteomics, imidazole
  • 相关文献

参考文献17

  • 1Pan S, Aebersold R, Chen R, et al. Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res, 2009, 8(2): 787-797.
  • 2Minden JS, Dowd SR, Meyer HE, et al. Difference gel electrophoresis. Electrophoresis, 2009, 30 (Suppl 1): S156-161.
  • 3Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol, 2003, 7(1): 55-63.
  • 4Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotech, 1999,17(10): 994-999.
  • 5Oda Y, Huang K, Cross FR, et al. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA, 1999, 96(12): 6591-6596.
  • 6Krusemark C J, Ferguson JT, Wenger CD, et al. Global amine and acid functional group modification of proteins. Anal Chem, 2008, 80(3): 713-720.
  • 7Tao WA, Aebersold R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol, 2003, 14(1): 110-118.
  • 8Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol, 2001, 19(10): 946-951.
  • 9Wiese S, Reidegeld K_A, Meyer HE, et al. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics, 2007, 7(3): 340-350.
  • 10Noga M J, Asperger A, Silberring J. N-terminal H3/D3-acetylation for improved high-throughput peptide sequencing by matrix-assisted laser desorption/ionization mass spectrometry with a time-of-flight/time-of-flight analyzer. Rapid Commun Mass Spectrum, 2006, 20(12): 1823-1827.

同被引文献36

  • 1Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using mine-reactive isobaric tagging reagents. Mol Cell Proteomics, 2004, 3(12): 1154-1169.
  • 2Pierce A, Unwin RD, Evans CA, et al. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics, 2008, 7(5): 853-863.
  • 3Thompson A, Sch/ifer J, Kuhn K, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem, 2003, 75(8): 1895-1904.
  • 4Pichler P, Kocher T, Holzmann J, et al. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap Anal Chem, 2010, 82(15): 6549-6558.
  • 5Hebert AS, Merrill AE, Bailey DJ, et al. Neutron-encoded mass signatures for multiplexed proteome quantification. Nat Methods, 2013, 10(4): 332-334.
  • 6Griffin TJ, Xie H, Bandhakavi S, et al. iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res, 2007, 6(11): 4200-4209.
  • 7Olsen JV, Macek B, Lange O, et al. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods, 2007, 4(9): 709-712.
  • 8Wenger CD, Lee MV, Hebert AS, et al. Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods,2011, 8(11): 933-935.
  • 9Ting L, Rad R, Gygi SP, et al. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods, 2011, 8(11): 937-940.
  • 10Dayon L, Sonderegger B, Kussmann M. Combination of gas-phase fractionation and MS(3) acquisition modes for relative protein quantification with isobaric tagging. J Proteome Res, 2012, 11 (10) 5081-5089.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部