期刊文献+

一类特殊的本原有向图的Scrambling指数

The Scrambling Index of a Special Class of Primitive Digraph
下载PDF
导出
摘要 对一类含有三个圈的本原有向图的scrambling指数进行了研究.结合本原有向图scrambling指数的定义,通过分析图的特点,利用顶点的度和集合之间的关系,通过集合的运算给出了此类图的scrambling指数及其广义scrambling指数的具体值. A special primitive digraph with three cycles are discussed. B.y the analysis of the characteristics of the digraph, combing with the definition of scrambling index of a primitive digraph, using the relationship between the vertex and the degree , the scrambling index and generalized scrambling indices of this special primitive digraphs are concluded through the set operations.
机构地区 中北大学数学系
出处 《山西师范大学学报(自然科学版)》 2012年第2期1-4,共4页 Journal of Shanxi Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071227)
关键词 本原有向图 SCRAMBLING指数 广义scrambling指数 the primitive digraph scrambling index generalized scrambling indices
  • 相关文献

参考文献6

  • 1Akelbek M, Kirkland S. Coefficients of ergodicity and the scrambling index[ J]. Linear Algebra and its Applications,2009,430 : 1111 - 1130.
  • 2Akelbek M, Kirkland S. Primitive digraphs with the largest scrambling index[ J ]. Linear Algebra and its Applications ,2009,430:1099 - 1110.
  • 3Liu Bolian, Hang Yu-fei. The scrambling index of primitive digraphs [ J ]. Computers and Mathematics with Applications, 2010,60:706 -721.
  • 4Chen Shexi, Liu Bolian. The scrambling index of symmetric primitive matrices [ J ]. Linear Algebra and its Applications, 2010,433:1110 - 1126.
  • 5Hang Yu-fei,Liu Bolian. Generalized scrambling indices of a primitive digraph [ J]. Linear Algebra and its Applications ,2010,433:1798 - 1808.
  • 6张月梅,陈佘喜.迹为零的对称本原矩阵的scrambling指数[J].河南科学,2011,29(2):136-138. 被引量:1

二级参考文献6

  • 1Akelbek M,Kirkland S.Coefficients of ergodicity and the scrambling index[J].Linear Algebra Appl,2009(430):1111-1130.
  • 2Akelbek M,Kirkland S.Primitive digraphs with the largest scrambling index[J].Linear Algebra Appl,2009 (430):1099-1110.
  • 3Chen Shexi,Liu Bolian.The scrambing index of symmetric primitive matrices[J].Linear Algebra Appl,2010(433):1110-1126.
  • 4徐俊明.图论及其应用[M].2版.北京:中国科学技术大学出版社,2005.
  • 5Shao Jiayu.The exponent set of symmetric primitive matrices[J].Scientia Sinica (Ser.A),1987 (30):348-358.
  • 6Brualdi R A,Shao J.Generalized exponent set of primitive symmetric digraphs[J].Discrete Appl Math,1997 (74):275-293.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部