期刊文献+

基于光滑有限元法的体积锁定研究 被引量:3

Study of volumetric locking based on the smoothed finite element method
原文传递
导出
摘要 针对数值模拟中求解几乎不可压缩材料时产生的体积锁定问题,提出了2种基于光滑有限元法的解决方案。方案1基于光滑子单元域有限元法,通过将材料特性矩阵划分为剪切部分和挤压部分,利用选择积分分别形成相应的刚度矩阵,对产生体积锁定的挤压部分运用一个光滑子单元进行计算,而对剪切部分运用多个光滑子单元进行计算;方案2综合应用光滑节点域有限元法和光滑边域有限元法,用免于体积锁定的光滑节点域有限元法计算挤压部分,用结果精确的光滑边域有限元法计算剪切部分。算例研究结果证明了2种方案的正确性和有效性,且方案2的计算精度高于光滑节点域有限元法。 Aimed at the volumetric locking problems that were produced by the calculation of the nearly incompressible material in numerical simulation,two schemes based on the smoothed finite element method(SFEM) were proposed.The first scheme was to decompose the material properties matrix into two parts,the volumetric part and non-volumetric part,and the stiffness matrix was also correspondingly decomposed into two parts.Then,the cell-based smoothed finite element method(CS-FEM) using one subcell(SC=1) was used only on the volume-part and the CS-FEM using more than one subcell(SC〉1) was used on the remaining part.The second scheme was to use the node-based smoothed finite element method(NS-FEM) that was free from volumetric locking to calculate the volumetric part and to use the edge-based finite element method(ES-FEM) that had accurate results to calculate the remaining part.Results of the numerical study showed that both schemes were correct and effective,and the second scheme was more accurate than NS-FEM.
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第3期93-99,共7页 Journal of Shandong University(Engineering Science)
基金 山东省自然科学基金资助项目(Y2007A07)
关键词 光滑有限元法 体积锁定 选择积分 smoothed finite element method(SFEM) volumetric locking selective integration
  • 相关文献

参考文献22

  • 1ZIENKIEWICZ O C, TAYLOR R L, TOO J M. Reduced integration technique in general analysis of plates and shells [J]. International Journal for Numerical Methods in Engineering, 1971, 3(6) :275-290.
  • 2LIU G R, DAI K Y, NGUYEN T T. A smoothed finite element method for mechanics problems [J]. Computational Mechanics, 2007, 39(6) :859-877.
  • 3LIU G R, NGUYEN T T, DAI K Y. Theoretical aspects of the smoothed finite element method [ J ]. International Journal for Numerical Methods in Engineering, 2007 ( 71 ) : 902-930.
  • 4LIU G R, NGUYEN T T, LAM K Y. A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM) [J]. Computer Methods in Applied Mechanics and Engineering, 2009 (87) :14-26.
  • 5LIU G R, NGUYEN T T, LAM K Y. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids [J]. Sound and Vibration, 2009, 320 ( 4 ) : 1100-1130.
  • 6崔向阳,李光耀.基于边光滑有限元法的剪切变形板几何非线性分析[J].计算机辅助工程,2011,20(1):155-162. 被引量:7
  • 7NGUYEN T T, LIU G R, LAM K Y. A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements [J]. Computer Methods in Applied Mechanics and Engineering, 2009 ( 78 ) : 324-353.
  • 8MALKUS D S, HUGHES T J R. Mixed finite element methods-reduced and selective integration techniques: a unification of concepts [J]. Computer Methods in Applied Mechanics and Engineering, 1978, 15( 1 ) : 63-81.
  • 9HERRMANN L R. Elasticity equations for incompressible and nearly incompressible materials by variational theorem[J]. AIAA Journal, 1965, 15(2) :1896-1900.
  • 10SANI R L, GRASHO P M, LEE R L, et al. The cause and cure of the spurious pressures generated by certain FEM solutions of the incompressible Naviers-Stokes equations: part 1 [J]. Numerical Methods Fluids, 1981, 1(2) : 17-43.

二级参考文献29

  • 1BELYTSCHKO T, TSAY C S, LIU W K. A stabilization matrix for the bilinear Mindlin plate element[J]. Comput Methods Appl Mech & Eng, 1981, 29(3) : 313-327.
  • 2BATOZ J L, TAHAR M B. Evaluation of a new quadrilateral thin plate bending element[J]. Int J Numer Methods Eng, 1982, 18( 11 ) : 1655- 1677.
  • 3BATHE K J, DVORKIN E N. A formulation of general shell elements-the use of mixed interpolation of tensorial components[ J]. Int J Numer Methods Eng, 1986, 22(3) : 697-722.
  • 4PUGH E D, HINTON E, ZIENKIEWICZ O C. A study of triangular plate bending element with reduced integration[ J]. Int J Numer Methods Eng, 1978, 14(12): 1059-1078.
  • 5BELYTSCHKO T, STOLARSKI H, CARPENTER N. A CO triangular plate element with one-point quadrature[ J]. Int J Numer Methods Eng, 1984, 20(5) : 787-802.
  • 6STRICKLIN J, HAISLER W, TISDALE P, et al. A rapidly converging triangular plate bending element [ J]. AIAA J, 1969, 7(1 ) : 180-181.
  • 7DHATT G. Numerical analysis of thin shells by curved triangular elements based on discrete Kirchhoff hypothesis [ C ] // Proc ASCE Symp lpplications FEM Civil Eng, Vanderbilt Univ, Nashville, 1969: 255-278.
  • 8DHATT G S. An efficient triangular shell element [ J ]. AIAA J, 1970, 8 ( 11 ) : 2100-2102.
  • 9BATOZ J L, BATHE K J, HO L W. A study of three-node triangular plate bending elements[ J]. Int J Numer Methods Eng, 1980, 16 (12) : 1771-1812.
  • 10CHEN Wanji, CHEUNG Y K. Refined 9-DOF triangular Mindlin plate elements[ J]. Int J Numer Methods Eng, 2001,51(11) : 125941281.

共引文献9

同被引文献76

  • 1李忠学.梁板壳有限单元中的各种闭锁现象及解决方法[J].浙江大学学报(工学版),2007,41(7):1119-1125. 被引量:8
  • 2罗伯特.D.库克,戴维.S.马尔库斯,迈克尔.E.普利沙,等.有限元分析的概念与应用[M].关正西,强洪夫,译.4版.西安:西安交通大学出版社,2007:323-326,527-530.
  • 3T. T. Nauven,G. R. Liu,K. Y. Dai,K. Y. Lam.Selective Smoothed Finite Element Method[J].Tsinghua Science and Technology,2007,12(5):497-508. 被引量:4
  • 4徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2008:63-64.
  • 5HUGHES T J R. The finite element method [M]. New York: Dover Publications, 2000.
  • 6BATHE K J. Finite element procedures [M]. NewJersey: Prentice Hall, 1996.
  • 7HUGHES T J R. Reduced and selective integration techniques in the finite element analysis of plates [J]. Nuclear Engineering and Design, 1978, 46(1): 203-222.
  • 8FLANAGAN D P, BELYTSCHKO T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control [J]. International Journal for Numerical Methods in Engineering, 1981, 17(5): 679-706.
  • 9BELYTSCHKO T, BACHRACH W E. Efficient implementation of quadrilaterals with high coarse mesh accuracy [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 54(2): 279-301.
  • 10FREDRIKSSON M, OTTOSEN N S. Fast and accurate 4 node quadrilateral [J]. International Journal for Numerical Methods in Engineering, 2004, 61(11): 1809-1834.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部