期刊文献+

多孔介质中不可压缩混溶驱动问题的一类特征积分平均非重叠型区域分解方法

A type of non-overlapping domain decomposition procedure combined with the characteristic method for incompressible miscible displacement in porous media
原文传递
导出
摘要 给出了多孔介质中不可压缩流体混溶驱动问题的一种数值逼近格式。该格式包含两种方法:对压力方程采用标准混合元方法,对浓度方程采用非重叠区域分解和特征线法。该算法用Galerkin隐格式求解子区域内部的值而用积分平均方法显式逼近内边界上的值,从而实现了并行计算,并求得该算法的最优L2-模误差估计。 A numerical approximate scheme is considered for incompressible miscible displacement in porous media.This scheme is constructed by two methods.The standard mixed finite element is used for the pressure equation.A parallel non-overlapping domain decomposition procedure combined with the characteristic method is presented for the concentration equation.This parallel procedure uses the implicit Galerkin method in the sub-domains and simple explicit flux calculation on the inter-domain boundaries by the integral mean method to predict the inner-boundary conditions.Thus,parallelism can be achieved.Optimal order in L2-norm error estimates are derived for this scheme.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第6期49-56,62,共9页 Journal of Shandong University(Natural Science)
基金 山东省自然科学基金青年基金资助项目(ZR2010AQ019) 山东省优秀中青年科学家科研奖励基金资助项目(BS2009NJ003)
关键词 不可压缩混溶驱动 非重叠区域分解方法 混合元 特征线法 积分平均方法 incompressible miscible displacement non-overlapping domain decomposition procedure mixed finite element method characteristic method integral mean method
  • 相关文献

参考文献9

  • 1JR DOUGLASS J. Numeriacal method for the flow of miscible fluids in porous media[ C]//LEWIS R W, BETTESS P, HIN- TON E. Numerical Method in Coupled Systems. London: Wiley, 1984.
  • 2MA Keying, SUN Tongjun, YANG Danping. Galerkin domain decomposition procedures for parabolic equation of genemal form on general domain[ J ]. Numer Methods Partial Differertial Equations, 2009, 25 (5) : 1167-1194.
  • 3MA Keying, SUN Tongjun. Galerkin domain decomposition procedures for parabolic equation on rectangulardomain [ J ]. In Numer Methods Fluids, 2010, 62(4) :449-472.
  • 4SUN Tongjun, MA Keying. Parallel Galerkin domain decomposition procedures based on the streamline diffusion method for convection-diffusion problems[ J ]. J Comput Appl Math, 2011, 235:4464-4479.
  • 5SUN Tongjun, MA Keying. Parallel Galerkin domain decomposition procedures for wave equation[ J ]. J Comput Appl Math, 2010, 233(8) :1850-1865.
  • 6RUSSELL T F. Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displace- ment in porous media[J]. SIAM J Numer Anal, 1985, 22(5) :970-1013.
  • 7BREZZI F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers [ J ]. RAIRO Anal Numer, 1974, 2:129-151.
  • 8JR DOUGLASS J, EWING R E, WHEELER M F. Approximation of the pressure by a mixed method in the simulation of mis- cible displacement[ J ] RAIRO Anal Numer, 1983, 17:17-33.
  • 9EWING R E, RUSSELL T F, WHEELER M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics[ J ]. Comput Methods Appl Mech Engrg, 1984, 47 : 73 -92.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部