摘要
给出了多孔介质中不可压缩流体混溶驱动问题的一种数值逼近格式。该格式包含两种方法:对压力方程采用标准混合元方法,对浓度方程采用非重叠区域分解和特征线法。该算法用Galerkin隐格式求解子区域内部的值而用积分平均方法显式逼近内边界上的值,从而实现了并行计算,并求得该算法的最优L2-模误差估计。
A numerical approximate scheme is considered for incompressible miscible displacement in porous media.This scheme is constructed by two methods.The standard mixed finite element is used for the pressure equation.A parallel non-overlapping domain decomposition procedure combined with the characteristic method is presented for the concentration equation.This parallel procedure uses the implicit Galerkin method in the sub-domains and simple explicit flux calculation on the inter-domain boundaries by the integral mean method to predict the inner-boundary conditions.Thus,parallelism can be achieved.Optimal order in L2-norm error estimates are derived for this scheme.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2012年第6期49-56,62,共9页
Journal of Shandong University(Natural Science)
基金
山东省自然科学基金青年基金资助项目(ZR2010AQ019)
山东省优秀中青年科学家科研奖励基金资助项目(BS2009NJ003)
关键词
不可压缩混溶驱动
非重叠区域分解方法
混合元
特征线法
积分平均方法
incompressible miscible displacement
non-overlapping domain decomposition procedure
mixed finite element method
characteristic method
integral mean method