摘要
研究足球机器人在已知静态环境下路径规划问题,在避障环境下寻求最优路径,提出了一种基于粒子群优化算法的足球机器人路径规划方法。为适应PSO算法的自身特点和提高算法搜索的效率,在传统栅格法的基础上引入实际坐标系法,对环境进行建模;为了更好地评价粒子(即解)的性能,在进行碰撞判定的基础之上,引入罚函数方法,克服了传统适应度函数难以更好地表达粒子性能的缺点。进行仿真的结果表明,该算法在足球机器人路径规划方面具有可行性、有效性和鲁棒性。
A global soccer robot path planning approach based on particle swarm optimization (PSO) is presented for path planning prob- lem in known static environment. In order to adapt the PSO and improve the search efficiency of the algorithm, a new map between start- ing-point and goal-point is made up of semi-grid and semi-coordinate system. In order to evaluate the particles" performance, a penalty function method is used based on collision detection. Simulation results show that the PSO applied in soccer robot path planning is in terms of feasibility, validity and robustness.
出处
《计算机技术与发展》
2012年第7期124-127,共4页
Computer Technology and Development
基金
国家自然科学基金项目(61170119)
安徽省自然科学研究项目(KJ2011Z266)
池州学院自然科学重点研究项目(2010ZRZ07)