期刊文献+

ReliefF算法在雷达辐射源信号识别中的应用 被引量:5

Application of ReliefF Algorithm in Radar Emitter Signal Recognition
下载PDF
导出
摘要 采用小波包变换提取雷达辐射源信号特征能够有效对信号进行识别,然而,由小波包变换提取的信号特征维数高,部分信号特征受噪声污染严重.基于此,采用ReliefF算法对信号特征的分类能力进行评价,选择出小波包中分类能力强的信号特征,再通过特征相关度算法去除分类能力相近的冗余特征,利用剩余的分类能力强的信号特征组成特征向量进行分类.仿真实验结果显示,该方法用较少的信号特征能够获得较高的正确识别率. Features extracted by wavelet packet transform can effectively identify signals, however, feature dimension of the features is high and some characteristics are seriously polluted by the noise. Classification ability of the features was evaluated by ReliefF algorithm and features with strong classification ability in wavelet packets were picked out. Then redundant features of similar classification ability were deleted by characteristic similarity algorithm. The remaining features of strong classification ability composed eigenvectors and they would be classified. Simulation experimental results show that this method using fewer features can obtain higher right recognition rate.
出处 《成都大学学报(自然科学版)》 2012年第2期151-153,共3页 Journal of Chengdu University(Natural Science Edition)
关键词 雷达辐射源信号 小波包变换 RELIEFF算法 雷达辐射源信号特征 radar emitter signal wavelet packet transform ReliefF algorithm features of radar emitter sig-nal
  • 相关文献

参考文献6

  • 1Granger E, Rubin M A, Grossberg S, et al.A What-and-where Fusion Neural Network for Recognition and Tracking of Mulple Radar Emuers [ J ]. Neural Networks, 2001,14 (3) : 325 - 344.
  • 2Zhou Y F, Lee J P Y. A MDL Approach for Determining the Number of Emitters Using Intra-pulse Information[ C]//Proceed- ings of IEEE Pacific Rim Confererwe on Conmumimtions, Com- puters and Signal Processing. New York: IEEE. Press, 1999:548 -551.
  • 3张葛祥,荣海娜,金炜东.基于小波包变换和特征选择的雷达辐射源信号识别[J].电路与系统学报,2006,11(6):45-49. 被引量:35
  • 4Hu X G,Wang F,Zhao H L,et al. The MechancaFaut Dag- nosis for HV Breakers on the Wavelet Packet Analysis [ C ]//Pro- ceedings of Instnonentation and Measurement Technology Confer- ence. Colorado, USA: IEEE Press, 2003: 415 - 419.
  • 5Kononenko I. Estimation Attributes: Analysis and Ex-tension of RELIEF[ C]//The 1994 European Conference on Machine Le- arning. San Francisco, USA: IEEE Press, 1994:171 - 182.
  • 6Platt J C, Cristianini N, Shawe T J. Largemargin DAGsfor Multi- class Classification[ C]//Pro-ceedngs of the 1999 Conference on Admnce in Neurallnformation Processing Systems. Cambridge: MIT Press,2000:547 - 553.

二级参考文献13

  • 1张葛祥,金炜东,胡来招.基于相像系数的雷达辐射源信号特征选择[J].信号处理,2005,21(6):663-667. 被引量:23
  • 2Granger E,Rubin M A,Grossberg S,et al.A what-and-where fusion neural network for recognition and tracking of multiple radar emitters[J].Neural Networks,2001,14(3):325-344.
  • 3Lee J P Y.A multi-channel digital receiver:intra-pulse analysis and direction-finding[A].Proceedings of IEEE Pacific Rim Conference on Communications,Computers and Signal Processing[C].1999.589-592.
  • 4Zhou Y F,Lee J P Y.A MDL approach for determining the number of emitters using intra-pulse information[A].Proceedings of IEEE Pacific Rim Conference on Communications,Computers and Signal Processing[C].1999.548-551.
  • 5Hu X G,Wang F,Zhao H L,et al.The mechanical fault diagnosis for HV breakers on the wavelet packet analysis[A].Proceedings of Instrumentation and Measurement Technology Conference[C].2003.415-419.
  • 6Ye Z G,Wu B,Sadeghian A.Current signature analysis of induction motor mechanical fault by wavelet packet decomposition[J].IEEE Transaction on Industrial Electronics,2003,50(6):1217-1228.
  • 7Zhao J,Wang G Y,Wu A F,et aL The study on technologies for feature selection[A].Proceedings of the First International Conference on Machine Learning and Cybernetics[C].2002.689-693
  • 8张静远,张冰,蒋兴舟.基于小波变换的特征提取方法分析[J].信号处理,2000,16(2):156-162. 被引量:106
  • 9巫胜洪.雷达脉内特征提取方法的研究[J].舰船电子对抗,2002,25(1):25-28. 被引量:25
  • 10吕铁军,王河,肖先赐.新特征选择方法下的信号调制识别[J].电子与信息学报,2002,24(5):661-666. 被引量:48

共引文献34

同被引文献48

  • 1刘镇波,刘一星,沈隽,刘明.乐器共鸣板用木材的声学特性研究进展[J].西北林学院学报,2006,21(3):124-129. 被引量:21
  • 2王克奇,王业琴,白雪冰,戴天虹,石岭.板材图像识别中颜色特征参数的提取[J].东北林业大学学报,2006,34(3):104-105. 被引量:8
  • 3韩英莉,颜云辉.基于BP神经网络的带钢表面缺陷的识别与分类[J].仪器仪表学报,2006,27(12):1692-1694. 被引量:27
  • 4张学工.模式识别[M].3版.北京:清华大学出版社,2010.
  • 5Gulum T O,Pace P E,Cristi R.Extraction of Polyphase RadarModulation Parameters Using a Wigner-ville Distribution——Radon Transform[C]//Proc.of IEEE International Conferenceon Acoustics,Speech and Signal.Taipei,China:[s.n.],2008.
  • 6Kawalec A,Owczarek R.Specific Emitter Identification UsingIntra-pulse Data[C]//Proc.of European Radar Conference.Visby,Sweden:[s.n.],2004.
  • 7Kawalec A,Owczarek R.Radar Emitter Recognition UsingIntra-pulse Data[C]//Proc.of the 15th International Confe-rence on Microwaves,Radar and Wireless Communications.Warsaw,Poland:[s.n.],2004.
  • 8程吉祥.基于时频原子方法的雷达辐射源信号识别[D].成都:西南交通大学,2010.
  • 9Friedman J H,Rafsky L C.Multivariate Generalizations of theWald-wolfowitz and Smirnov Two-sample Tests[J].TheAnnals of Statistics,1979,7(4):697-717.
  • 10Hoekstra A,Duin R P W.On the Nonlinearity of PatternClassifiers[C]//Proc.of the 13th International Conference onPattern Recognition.[S.l.]:IEEE Press,1996.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部