期刊文献+

基于RCSCT变换的DR图像去噪及加速 被引量:1

DR image de-noising and acceleration based on recursive cycle spinning contourlet transformation
下载PDF
导出
摘要 目的数字化X线摄影(digital radiography,DR)图像中的高斯噪声对图像质量影响大,消除此类噪声有利于提高图像质量以辅助医生做出正确的诊断。方法为抑制DR图像的高斯噪声,首先采用递归循环平移与Contourlet变换结合的(recursive cycle spinning Contourlet transform,RCSCT)方法变换分解DR图像,接着采用连续的二元软阈值函数处理变换系数防止系数被过度扼杀,然后基于CUDA(compute unified device architecture,计算统一设备架构)平台对去噪方法加速。结果该方法提高了去噪后的图像峰值信噪比,有效抑制了伪吉布斯现象,保留了更多的图像细节信息,并且加速处理后运算耗时较短。结论本文方法比小波变换和Contourlet变换在保留视觉细节信息方面效果更优,算法耗时少,实用性好。 Objective The influence of Gaussian noise on digital radiography(DR) image is great, and the removal of Gaussian noise is beneficial to the image quality and clinical diagnosis. Methods To suppress Gaussian noise of DR image,this paper first decomposes DR image based on recursive cycle spinning Contourlet transform (RCSCT)that combines recursive cycle spinning and Contourlet transform, then adopts continuous binary soft threshold function to process the transformed coefficients, which can prevent coefficients over killed, and subsequently accelerates the de-noising method based on compute unified device architecture (CUDA) platform. Results The experimental results show that the suggested method can obtain higher PSNR value, inhibit Gibbs-like phenomena, and preserve more image details with shorter time-consuming after acceleration. Conclusions The proposed method based on RCSCT is better than wavelet transform and Contourlet transform in practicability, time consuming and preservation of visual information.
出处 《北京生物医学工程》 2012年第3期245-250,共6页 Beijing Biomedical Engineering
关键词 DR图像去噪 CONTOURLET变换 递归循环平移 计算统一设备架构 DR image de-noising Contourlet transform recursive cycle spinning compute unifieddevice architecture
  • 相关文献

参考文献10

  • 1丰国栋,何祥彬,周荷琴.基于Laplace-Impact混合模型的DR图像去噪算法[J].中国医疗器械杂志,2009,33(4):247-250. 被引量:3
  • 2Candes EJ, Do DL. Curvelets: A surprisingly effective non- adaptive representation for objects with edges [ C ]. Curve and Surface Fitting. Nashvil-le, TN, USA: Vanderbilt University Press, 1999.
  • 3Do MN, Vetterli M. Contourlets: A directional multiresolution image representation[ C]. Proc of IEEE International Conference on Image Processing. Rochester,NY :2002 : 357-360.
  • 4Coifman RR, Donoho DL. Translation invariant denoising [ C ]. Wavelets and Statistics, Springer Lecture Notes in Statistics 103. New York :Springer Verlag, 1995 : 125-150.
  • 5Fletcher AK,Ramchandran K, Goyal VK. Wave-let denoising by recursive cycle spinning [ C ]. Proc IEEE International Conference Image Processing. Rochester,NY :2002 : 873-876.
  • 6Fletcher AK, Ramchandran K, Goyal VK. Iterative projective wavelet methods for denoising[ J]. Proc Wavelets:Appl in Sig &Image Proc X, part of SPIE Int Symp on Optical Sci & Tech, 2003,5207 ( 1 ) :9-15.
  • 7Eslami R, Radha H. The contourlet transform for image de- noising using cycle spinning [ C ]. Asilo-mar Conference on Signals, Systems, and Compu-ters. Pacific Grove, USA: 2003. 1982-1986.
  • 8梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 9杨晓慧,焦李成,牛宏娟,王中晔.基于多阈值的非下采样轮廓波图像去噪方法[J].计算机工程,2010,36(4):200-201. 被引量:12
  • 10何祥彬,周荷琴,李方勇.基于CUDA平台的DR图像增强处理加速算法[J].中国医疗器械杂志,2010,34(1):9-11. 被引量:2

二级参考文献33

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2袁非牛,周荷琴,冯焕清.诸葛斌[J].中国图象图形学报(A辑),2003,8(12):1438-1443. 被引量:5
  • 3李名庆,高新波,许晶.多尺度塔型医学图像增强算法[J].中国生物医学工程学报,2006,25(2):178-181. 被引量:5
  • 4Ashish Khare,Uma Shanker.A new method for deblurring and denoising of medical images using complex wavelet transform[C].Conference Proceeding of 1EEE Engineering in Medicine and Biology Society,2006,1897-1900.
  • 5Ricardo J.Ferrari,Robin Winsor.Digital radiographic image denoising via wavelet-based hidden Markov model estimation[J].Journal of Digital Imaging,2005,18(2):154-167.
  • 6Mark Miller,Nick Kingsbury.Image denoising using derotated complex wavelet coefficients[J].IEEE Transactions on Image Processing,2008,17(9):1500-1511.
  • 7Hossein Rabbani,Mansur Vafadust.Image denoising in complex wavelet domain using a mixture of bivariate Laplacian distributions with local parameters[J].Proceedings of SPIE,2007,Vol.6575,pp.65750P
  • 8I W Selesnick,R G Baraniuk,and N G Kingsbury.The dual-tree complex wavelet transform-a coherent framework for multiseale signal and image processing[J].IEEE Signal Processing Magazine,2005,22(6):123-151.
  • 9MK Mihcak,1 Kozintsev,K Ramchandran,et al.Lowcomplexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6(12):300-303.
  • 10David L.Donoho.Denoising by soft-threshold[J].IEEE Transactions on Information Theory,1995,41(3):613-627,

共引文献50

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部