期刊文献+

三维最小二乘无网格方法精度与误差分析 被引量:4

Precision and Error Analysis of 3D Least-square Meshless Method
下载PDF
导出
摘要 为了得到最小二乘无网格方法在求解三维Euler方程时的计算精度及其应用于三维流场求解的准确性,通过数学方法对该无网格方法在正交等间距离散点分布情况下的计算精度进行了论证,给出了基于正交等间距和非正交均匀布点的4个三维验证算例。并将该文计算结果与其他网格方法得到的计算结果和理论结果进行了比较,两种方法得到的计算结果吻合较好,与理论结果的误差在合理范围以内。结果表明将最小二乘无网格方法应用于三维流场的求解是完全可行的。 In order to obtain the calculation precision and the feasibility for solving three-dimensional inviscid now fields using the least-square meshless method, a mathematical demonstration based on orthogonal and proportional spacing point distribution is proposed here. Four three-dimensional cases are given based on orthogonal (non-orthogonal)and proportional spacing point distribution. The results obtained with the lease-square meshless method are in good agreement with the theoretical results and the results obtained with other mesh methods. The relative error between numerical results and theoretical ones is within reasonable bounds. The results indicate the meshless method can be applied to simulating the three-dimensional flow fields.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第3期492-498,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(11072114)
关键词 三维 最小二乘法 无网格方法 超声速流场 three-dimension least-square method meshless method supersonic flow fields
  • 相关文献

参考文献7

二级参考文献22

  • 1黄明恪.用非结构网格与欧拉方程计算复杂区域的二维流动[J].计算物理,1994,11(4):467-471. 被引量:6
  • 2杨津光.开式压力机机身主截面的优化设计及八节点等参元计算[A]..三省一市第二届锻压年会论文集[C].,1985..
  • 3STOLCIS L, JOHNSTON I. J. Solution of the Euler equations on unstructured grids for two-dimensional compressible flow[J]. AeronautialJ, 1990, 94:181--195.
  • 4BATINA J T. A gridless Euler/Navier-Stokes solution algorithm for complex-aircraft applications, AIAA 93--0333[R]. 1993.
  • 5LIU J L, SU S J. A potentially gridless solution method for the compressible Euler/Navier-Stokes equations, AIAA96- 0526[R]. 1996.
  • 6KOJI M. Gridless type solution for high reynolds number multielement flow fields, AIAA95--1856[R]. 1995.
  • 7KOJI M. An implicit gridless type solver for the Navier-Stokes equations[J]. Computational Fluid Dynamics Journal, 2000, 9(1) :551-560.
  • 8NOJI M. Gridless type solver--generalized finite difference method[J]. Numerical Fluid Mechanics, 2001,78:43-58.
  • 9Nayroles B, et al. Generalizing the finite element method: diffuse approximation and diffuse elements.J]. Comput Mech, 1992,10:307-318.
  • 10Belytsehko T, Lu Y Y, Gu L. Element-free Galerkin method [J]. Int J Numer Methodds Engrg. 1994,37 : 229-256.

共引文献22

同被引文献47

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部