期刊文献+

K-means聚类神经网络分类器在睡眠脑电分期中的应用研究

Applied Research of K-means Clustering Neural Network Classifier in the Sleep EEG Staging
下载PDF
导出
摘要 利用近似熵的方法对睡眠EEG信号进行分期,但睡眠Ⅲ期和Ⅳ期近似熵值非常接近,靠近似熵值无法区分,对分期结果中的Ⅲ期和Ⅳ期EEG信号进行AR(自回归)建模,作为该段EEG信号的特征属性,利用K-means聚类的神经网络分类器对睡眠Ⅲ期和Ⅳ期进行分期,达到了很好的分期效果. Because the sleep stage III and IV approximate entropy (ApEn) values are very close, using the approximate entropy method for sleep staging EEG signal, they are not distinguished. AR model of staging results in stage III and IV EEG signal is establisthed as the EEG signal characteristics,and K-means clustering neural network classifier is used for the sleep phase III and IV stage, so a good stage effect is achieved.
出处 《河南科学》 2012年第6期730-732,共3页 Henan Science
基金 陕西省教育厅专项科研计划项目(11JK0480) 陕西省自然科学基础研究计划项目(2011JM1010) 渭南师范学院院级项目(12YKS029)
关键词 分类器 聚类 睡眠脑电 分期 classifier clustering sleep EEG staging
  • 相关文献

参考文献9

  • 1Rechtschaffen A, Kales A. A manual of standardized, terminology techniques and scoring system for sleep stages of human subjects [M]. Washington D C: Government Printing Office, Public Health Service, 1968.
  • 2刘慧,和卫星,陈晓平.睡眠脑电的非线性动力学方法[J].江苏大学学报(自然科学版),2005,26(2):174-177. 被引量:19
  • 3和卫星,陈晓平,邵珺婷.基于样本熵的睡眠脑电分期[J].江苏大学学报(自然科学版),2009,30(5):501-504. 被引量:26
  • 4肖余粮,和卫星,陈晓平,吉奕,吴秋明.小波变换和小波熵在睡眠脑电信号变化特性研究中的应用价值[J].中国临床康复,2006,10(25):118-120. 被引量:11
  • 5Chen Weiting, Wang Zhizhong, Xie Hongbo, et al. Characterization of surface EMG signal based on fuzzy entropy [J]. IEEE Transa- ctions on Neural Systems and Rehabilitation Engineering, 2007, 15 (2) : 267-272.
  • 6Pedro P, Pavel G, Leticia A. Sleep stage classification using fuzzy sets and machine learning techniques [J]. Neurocomputing, 2004 (58) : 1137-1143.
  • 7Ventours E M, Monoyiou E A, Ktonas P Y, et al. Sleep spindle detection using artificial neuralnetworks trained with filtered time- domain EEG. a feasibility study [J]. Compute Methods Programs Biomed, 2005,78 (3) : 191-207.
  • 8HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 9Yang M S, Wu K L. A similarity-based robust clustering method [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (4) :434-448.

二级参考文献20

  • 1陈晓平,和卫星,温军玲.基于脑电波复杂度的麻醉深度监测[J].江苏大学学报(自然科学版),2003,24(6):73-75. 被引量:8
  • 2刘慧,和卫星,陈晓平.睡眠脑电的非线性动力学方法[J].江苏大学学报(自然科学版),2005,26(2):174-177. 被引量:19
  • 3王巧兰,季忠,秦树人.基于小波变换的脑电噪声消除方法[J].重庆大学学报(自然科学版),2005,28(7):15-17. 被引量:20
  • 4李治,汪曣,刘凤军,周鹏,王明时.入睡脑电信号的去噪[J].中国组织工程研究与临床康复,2007,11(13):2531-2533. 被引量:8
  • 5Richman J S, Moonnan R J. Physiological time-series analysis using approximate entropy and sample entropy [ J ]. Am J Physiol Heart Circ Physiol, 2000,278 ( 6 ) : H2039 - H2049.
  • 6Ge Jiayi,Zhou Peng, Zhao Xin, et al. Sample entropy analysis of sleep EEG under different stages [ C ]//Proceedings of IEEE/ICME International Conference on Complex Medical Engineering. [ S. l. ] : [ s. n. ], 2007 : 1499 - 1502.
  • 7Pincus S M. Approximate entropy as a measure of system complexity [J]. Proc Natl Acad Sci USA, 1991 , 88 : 2297 - 2301.
  • 8Goldberger A L,Amaral L A N, Glass L, et al. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals [ DB/OL]. [ 2008 - 09 - 18 ]. http://circ, ahajournals. org/cgi/content/full/101/23/e215.
  • 9BEN H ,BENOIT M .Knowledge-based approach to sleep EEG analysis--a feasibility study[J].IEEE Trans on Bio-Med Eng,1989,36(5):510.
  • 10HESE P Van,PHILIPS W.Automatic detection of sleep stages using the EEG [A].In:IEEE 2001 Proceeding of 23rd Annual EMBS International Conference[C].Turkey:Istanbul,2001.

共引文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部