期刊文献+

GaN HFET沟道中的强场峰和背势垒 被引量:1

Peaked Electric Field in Channel and Back Barrier in GaN HFET
下载PDF
导出
摘要 研究了背势垒、场板电极、电流崩塌、短沟道效应及源-漏穿通等GaN HFET的热点课题及其关联。高漏压下沟道阱中的强场峰和背势垒的相互作用是决定上述热点课题的关键。介绍、分析了目前国外用Silvaco有限元经典模拟软件计算的结果,发现这些理论计算的能带都向缓冲层末端倾斜,电子从沟道阱转移到缓冲层末端,不能用来研究上述课题和进行器件优化设计。提出了新的量子模拟理念,用沟道阱的量子限制解开了上述难题。量子模拟结果解释了上述课题的实验结果及其关联,有望从沟道强场峰和背势垒的相互作用研究中优化设计出高漏压工作的大功率、高效GaN HFET。 The back barrier, field plate electrode, current collapse, short channel effect, source-drain punch through and other hot problems and their correlations are investigated in this paper. The interaction between the strong peaked electric field in channel and the back barrier under high drain voltage determines the mentioned above issues. The published energy bands of heterostructure quantum well under high drain voltage calculated by classical software such as Silvaco are introduced and analyzed. It is found that these calculated energy bands all incline from the channel quantum well to the end of buffer, to where the electrons in channel well are trans- ferred. It is impossible to investigate the mentioned above issues and implement the optimization of GaN HFET design by using these classical software. A new quantum model is proposed in this paper to resolve the difficulty in above classical software by the quantum confinement in the chan- nel well. The above problems and their correlation have been explained by the calculated energy bands. It is hoped that some excellent GaN HFETs with high power and high PAE under high drain voltage can be optimally designed from the investigation of interaction between the strong peaked electric field in channel and the back barrier under high drain voltage.
作者 薛舫时
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2012年第3期203-210,214,共9页 Research & Progress of SSE
关键词 氮化镓异质结场效应晶体管 沟道中的强场峰 背势垒 电流崩塌 场板电极 短沟道效应 源-漏穿通 GaN HFET peaked electric field back barrier current collapse field plateelectrode short channel effect source-drain punch through
  • 相关文献

参考文献16

  • 1Micovic M,Hashimoto P,Hu M,et al.GaN double heterojunction field effect transistor for microwave and millimeterwave power applications[C].IEEE IEDM,2004:33.4.1-4.
  • 2Bahat-Treidel E,Hilt O,Brunner F,et al.Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement[J].IEEE Electron Devices,2008,55(12):3354-3359.
  • 3Bahat-Treidel E,Hilt O,Brunner F,et al.AlGaN/GaN/AlGaN DH-HEMTs breakdown voltage enhancement using multiple grating field plates(MGFPs)[J].IEEE Electron Devices,2010,57(6):1208-1216.
  • 4Micovic M,Kurdoghlian A,Shinohara K,et al.W-band GaN MMIC with842mW output power at88 GHz[C].IEEE IMS,2010:237-239.
  • 5Jessen G H,Fitch R C,Gillespie J K,et al.Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices[J].IEEE Electron Devices,2007,54(10):2589-2597.
  • 6Guerra D,Akis R,Marino F A,et al.Aspect ratio impact on RF and DC performance of state-of-the-art short-channel GaN and InGaAs HEMTs[J].IEEE Electron Device Lett,2010,31(11):1217-1219.
  • 7Guerra D,Saraniti M,Faralli N,et al.Comparison of N-and Ga-face GaN HEMTs through cellular monte carlo simulations[J].IEEE Electron Devices,2010,57(10):3348-3354.
  • 8Park P S,Rajan S.Simulation of short-channel effects in N-and Ga-polar AlGaN/GaN HEMTs[J].IEEE Electron Devices,2011,58(3):704-708.
  • 9Endoh A,Yamashita Y,Hikosaka K,et al.Threshold voltage shifts in decananometre-gate AlGaN/GaN HEMTs[J].Electron Lett,2006,42(8):490-492.
  • 10Bahat-Treidel E,Hilt O,Brunner F,et al.Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement[J].IEEE Electron Devices,2008.,55(12):3354-3359.

二级参考文献15

  • 1Kuzmik J. Power electronics on InA1N/(In)GaN prospect for a record performance[J]. IEEE Electron Device Lett, 2004,22 (11) : 510-513.
  • 2Sarazin N, Morvan E, Poisson M A F, et al. AIInN/ AIN/GaN HEMT technology on SiC with 10 W/mm and 50% PAE at 10 GHz[J]. IEEE Electron Device Lett, 2010,31(1) :11-13.
  • 3Crespo A, Bellot M M, Chabak K D, et al. High- power Ka-band performance of AIInN/GaN HEMT with 9-8-nm-thin harrier[J] IEEE Electron Device Lett, 2010,31(1) :2-4.
  • 4Alomari M, Medjdoub F, Carlin J F, et al. InAIN/ GaN MOSHEMT with self-aligned thermally generat- ed oxide recess[J]. IEEE Electron Device Lett, 2009,30(11):1131-1133.
  • 5v Kordos P, Mikulics M, Fox A, et al. RF perfor-mance of lnA1N/GaN HFETs and MOSHFETs with fT * Lc up to 21 GHz * tm[J]. IEEE Electron DeviceLett, 2010,31(3) :180-182o.
  • 6Bolognesi C, Grandjean N. GaN HEMTs advance to ultrahigh bandwidths[J]. Compound Semiconductor, 2010,16(6):15-21.
  • 7Sun H, Alt A R, Benedickter H. 205 GHz (AI,In)N/ GaN HEMTs[J]. IEEE Electron Device Lett, 2010, 31(9):957-959.
  • 8Maier D, Alomari M, Grandiean N, et al. Testing the temperature limits of GaN-Based HEMT devices [J]. IEEE Transactions on device and Materials Reli- ability, 2010,11(4) :427-436.
  • 9Sun H, Alt A R, Benedickter H, et al. 102 GHz AIInN/GaN HEMTs on silicon with 2.5 W/mm out- put power at 10 GHz[J]. IEEE Electron Device Lett, 2009,30(8) :796-798.
  • 10Pei Y, Rajan S, Higashiwaki M, et al. Effect of di- electric thickness on power performance of A1GaN/ GaN HEMTs[J]. IEEE Electron Device Lett, 2009, 30(4):313-315.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部