期刊文献+

基于信号重要子空间匹配追踪的擦除补偿方法

Compensation of Signal with Erasures based on Its Significant Subspace Match Pursuit
下载PDF
导出
摘要 近年来的研究表明,自然界中能够为人们所理解的信号都具有稀疏的性质。利用信号的稀疏性,提出了一种基于被擦除信号重要子空间匹配追踪的擦除补偿方法。首先,在给定错误率的基础上定义了信号稀疏性的度量方法。然后,依据被擦除信号的有效部分基于正交匹配追踪方法来寻找信号的重要子空间。最后,基于迭代方程在信号的重要子空间中获得信号的近似表示,并将其作为被擦除信号的补偿信号。模拟实验结果显示了所提出方法补偿被擦除信号的有效性。 Recent years, the research results show that all the signals in nature represent the sparsity. A novel method to the compensation of a signal with erasures is proposed in this paper, by considering the sparsity of the signal of interest. First, a measurement is defined in or- der to describe the sparsity of a signal under a given error. Second, In terms of the available part in the erased signal, the significant subspace of the erased signal is found by using the orthogonal match pursuit. Finally, the compensation is obtained by approximating the erased signal in its significant subspace based on the iterating equation. The simulation experimental results show that the proposed method is well suit- able to the compensation for erasures.
出处 《智能计算机与应用》 2012年第3期10-12,共3页 Intelligent Computer and Applications
基金 黑龙江省青年科学技术基金(QC2010036) 黑龙江省科技厅指导性项目(GZ09A112)
关键词 正交匹配追踪 稀疏性度量 冗余字典 重要子空间 Orthogonal Match Pursuit Sparsity Measure Redundancy Dictionary Significant Subspace
  • 相关文献

参考文献11

  • 1BOUFOUNOS P,OPPENHEIM A V,GOYAL V K. Causal compensation for erasures in frame representations[J].IEEE Transactions on Signal Processing,2008,(03):1071-1082.doi:10.1109/TSP.2007.908963.
  • 2BERNARDINI R,RINALDO R. Efficient reconstruction from framebased multiple descriptions[J].IEEE Transactions on Signal Processing,2005,(08):3282-3296.doi:10.1109/TSP.2005.851159.
  • 3RATH G,GUILLEMOT C. Frame-theoretic analysis of DFT codes with erasures[J].IEEE Transactions on Signal Processing,2004,(02):447-460.doi:10.1109/TSP.2003.821106.
  • 4YU Guoshen,MALLAT S,BACRY E. Audio denoising by time-frequency block thresholding[J].IEEE Transactions on Signal Processing,2008,(05):1830-1839.doi:10.1109/TSP.2007.912893.
  • 5TROPP J,GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information theory,2007,(12):4655-4666.doi:10.1109/TIT.2007.909108.
  • 6CAND(E)S E J,ROMBERG J,TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information theory,2006,(02):489-509.
  • 7GULERYUZ O G. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part Ⅰ:theory[J].IEEE Transactions on Image Processing,2006,(03):539-554.doi:10.1016/j.ocl.2009.07.007.
  • 8GULERYUZ O G. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part Ⅱ:adaptive algorithms[J].IEEE Transactions on Imagge Processing,2006,(03):555-571.
  • 9CAND(E)S E J,WAKIN M B. An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):21-30.
  • 10CAND(E)S E J. Compressive sampling[J].International Congress of Mathematics,2006,(03):1433-1452.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部