期刊文献+

面向全变分图像复原的增广拉格朗日方法综述 被引量:1

Survey of Augmented Lagrangian Methods for Total Variation-based Image Restoration
下载PDF
导出
摘要 图像复原旨在根据退化图像重建高品质原始图像,其复原的质量和速度问题一直都是图像处理领域研究的重要方向。由于其图像边缘保持特性,全变分(TV)最小化模型在图像复原领域取得了很大的成功。然而,全变分图像复原是一个典型的非光滑优化问题,需要发展相应的快速优化算法,而增广拉格朗日方法(ALM)则是近年来发展起来的一类代表性方法。结合相关进展,综述了全变分图像复原模型,变量分裂(VS)法和典型ALM算法,并通过实验从CPU运行时间、峰值信噪比(PSNR)和品质评价等方面分析了不同的变量分裂和ALM方法对图像复原性能的影响。 Image restoration aims to reconstruct the original image with high quality from the degraded image, where restoration quality and speed are always the major targets of image restoration. Total variation (TV) minimization model has achieved great success in image restoration due to its capability in preserving the edges of image. However, TV-based image restoration is a classic nonsmooth optimization problem, and thus fast optimization algorithms are required. One class of promising methods among the fast optimization algorithms is aug- mented Lagrangian method (ALM). This paper provides a survey on TV-based image restoration model, variable splitting (VS), and ALM algorithms. By conducting comparative experiments, the paper further discusses the influence of image restoration with different variable splitting and augmented Lagrangian methods based on the performance indicators of CPU time, peak signal to noise ratio (PSNR), and im- age quality assessment.
出处 《智能计算机与应用》 2012年第3期44-47,共4页 Intelligent Computer and Applications
关键词 图像复原 全变分模型 增广拉格朗日方法 变量分裂法 Image Restoration Total Variation Augmented Lagrangian Method Variable Splitting
  • 相关文献

参考文献26

  • 1ACAR R,VOGEL C R. Analysis of total variation penalty methods[J].Inverse Problems,1994,(06):1217-1229.doi:10.1088/0266-5611/10/6/003.
  • 2DOBSON D C,SANTOSA F. Recovery of blocky images from noisy and blurred data[J].SIAM Journal of Applied Mathematics,1996,(04):1181-1198.doi:10.1137/S003613999427560X.
  • 3FIGUEIREDO M,NOWAK R. An EM algorithm for waveletbased image restoration[J].IEEE Transactions on Image Processing,2003,(08):906-916.doi:10.1109/TIP.2003.814255.
  • 4BIOUCAS-DAS J M,FIGUEIREDO M. A new twist:two step itcrative shrinkage/thresholding algorithms for image restoration[J].IEEE Transactions on Image Processing,2007,(12):2992-3004.doi:10.1038/nrclinonc.2010.119.
  • 5BECK A,TEBOULLE M. Fast gradient-based algorithms for cconstrained total variation image denoising and deblurring problems[J].IEEE Transactions on Image Processing,2009,(11):2419-2434.doi:10.1109/TIP.2009.2028250.
  • 6YIN W,OSHER S,GOLDFARB D. Bregman iterative algorithms for 11-minimization with applications to compressed sensing[J].SIAM Journal on Imaging Sciences,2008,(01):143-168.doi:10.1137/070703983.
  • 7GOLDSTEIN T,OSHER S. The split Bregman algorithm for 11 regularized problems[J].SIAM Journal on Imaging Sciences,2009,(02):323-343.doi:10.1137/080725891.
  • 8ZHANG X,BURGER M,BRESSON X. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[R].UCLA CAM Report,2009.doi:10.1021/om100296m.
  • 9ZUO W,LIN Z. A generalized accelerated proximal gradient approach for total variation-based image restoration[J].IEEE Transactions on Image Processing,2011,(10):2748-2759.
  • 10TAI X C,WU C. Augmented Lagrangian method,dual methods and split-bregman iterations for ROF,vectorial TV and higher order models[J].SIAM Journal on Imaging Sciences,2010,(03):300-339.doi:10.1111/j.1349-7006.2009.01396.x.

同被引文献12

  • 1L1 C, YIN W, JIANG H. et al. An efficient augmented la- griangian method with applications to total variation minimi- zation [ J ]. Computational optimization and applications, 2013,56 (3) :507-530.
  • 2TANIMOTO M, TEHRANI M, TOSHIAKI J. TV for 3-D spatial communication[ C ]//Proceedings of the IEEE. [ S. 1. ] :IEEE,2012:905-917.
  • 3NIU S, GAO Y, BIAN Z, et al. Sparse-view x-ray CT re- construction via total generalized variation regularization [J]. Physics in medicine and biology, 2014,59 (12): 2997-3017.
  • 4RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Journal of physics d, 1992,60 (2) :259-268.
  • 5CHAN S H, KHOSHABEH R, GIBSON K B,et al. An augmented lagrangian method fi)r total variation video resto- ration [ J ]. IEEE transactions on image processing, 2011 , 20(11) :3097-311 l.
  • 6ZUO W M, LIN Z C. A generlized accelerated proximal gradient approach for total variation based image restoration [J ]. IEEE transactions on image processing, 2011, 20(10) :2748-2759.
  • 7PATEL V M, MALEH R, GILBERT A C, et al. Gradient- based image recovery' methods from incomplete fourier mesurements[ J]. IEEE transactions on image processing, 2012,21 ( 1 ) :94-105.
  • 8NG M K, YUAN X M, ZHANG W X. Coupled variational image decomposititm anti restoration model for I)lurred car- toon-plus-texture? images with missing pixels [ J ]. IEEE transactions on image processing, 2013,22 ( 6 ) : 2233--2246.
  • 9MEYER Y. Oscillating patterns in image processing ant! in some nonlinear evolution equations[ M ]. [ S. 1. ]:American mathematical society ,2001.
  • 10陈明举,杨平先.一种更一般全变分图像复原模型[J].电视技术,2012,36(23):18-20. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部