期刊文献+

不同迎角下前体涡流动的等离子体控制特性 被引量:3

Exploring Flow Features of Conical Forebody Versus Angle of Attack under Plasma Actuation
下载PDF
导出
摘要 应用一对单介质阻挡放电等离子体激励器对20°顶角圆锥-圆柱组合体圆锥段分离涡流场进行了主动控制研究。实验在3.0 m×1.6 m低速风洞中进行,迎角35°~70°,基于圆锥段底面直径的雷诺数为5.0×104。实验结果包括7个测量截面周向压力分布、由周向压力分布推断得到的截面处空间涡结构以及积分得到的截面当地力和圆锥段力。实验结果表明:(1)在35°~50°迎角范围内,圆锥段流场只有一对非对称的主涡,圆锥段分离涡流动呈现近似锥型流特性,随着迎角增大,圆锥段侧向力系数符号不变;(2)在50°~70°迎角范围内,圆锥段流场呈现多涡结构,圆锥段分离涡流动不再呈现锥型流特性,此时随着迎角增大,圆锥段侧向力系数会发生多次变号;(3)等离子体控制使得圆锥段对涡流场中第1个新涡出现的迎角推迟。 A pressure measurement experimental study of the active control of vortices over slender forebodies was performed on a 20° circular cone forebody using a pair of Single-Dielectric Barrier Discharge (SDBD) plasma actu- ators. Section 1 of the full paper explains our exploration mentioned in the title. Its core consists of: " The tests were performed in the NWPU low-turbulence 3.0 m × 1.6 m low-speed wind tunnel at angles of attack of 35 ° - 70°. The Reynolds number based on the base diameter of the circular cone is 50 000. The results consist of detailed pressure distributions over seven stations along the cone with and without plasma control. From the measured pressures, the local side forces over the cone are calculated and the vortex patterns are inferred. " The experimental results, presented in Figs. 3 through 7 and Table 1, and their analysis indicate preliminarily that : ( 1 ) at the angles of attack of 35° -50° ,there exists just a pair of primary asymmetric vortices, the flowfields are the nearly conical flow ; with increased angles of attack, the overall side force remains of the same sign ; (2) at the angles of attack of 50° -70°the flowfields are no longer the conical flow and a multi-vortex pattern occurs; with increased angles of attack, the overall side force experiences the sign change several times; (3) the occurrence of the first additional vortex besides the initial vortex pair is delayed to a higher angle of attack due to the plasma actuation.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第3期402-406,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(51107101 11172243) 高等学校博士学科点专项科研基金(2009610212000) 西北工业大学基础研究基金(JC201218) 中国博士后科学基金(20100471000)资助
关键词 细长圆锥体 大迎角空气动力学 非对称分离涡 等离子体 主动流体控制 aerodynamics, experiments, flow control, measurements, plasmas, pressure distribution, schematicdiagrams, vortex flow, wind tunnels actuation, asymmetric vortex flow, high angle of attack aerody-namics, slender circular cone
  • 相关文献

参考文献2

二级参考文献16

  • 1Ericsson L. Sources of High Alpha Vortex Asymmetry at Zero Sideslip. Journal of Aircraft, 1992, 29(6) : 1086 - 1090.
  • 2Keener E R, Chapman G T, Chohen L, et al. Side Forces on Forebodies at High Angle of Attack and Maeh Numbers from 0.1 to 0.7 : Two Tangent Ogives, Paraboloid and Cone. NASA TM X-3438, 1977.
  • 3Ericsson L E, Reding J P. Aerodynamic Effects of Asymmetric Vortex Shedding from Slender Bodies. AIAA-1985-1797.
  • 4Dexter P C. A Study of Asymmetric Flow over Slender Bodies at High Angles of Attack in a Low Turbulence Environment. AIAA-1984-0505.
  • 5Pidd M, Smith J. Asymmetric Vortex Flow over Circular Cones. Vortex Flow Aerodynamics, 1991, AGARD CP-494:18-1-11.
  • 6Cai J, Liu F, Luo S. Stability of Symmetric Vortex in Two-Dimensions and over Three Dimensional Slender Conical Bodies. J Fluid Mech, 2003, 480 : 65 - 94.
  • 7Lamont P J. Pressures around an Inclined Ogive Cylinder with Laminar, Transitional, or Turbulent Separation. AIAA J, 1982, 20(10) :1492 - 1499.
  • 8Malcolm G N,Skow A M.Enhanced controllability throu-gh vortex manipulation on fighter aircraft at high angles of attack[R].AIAA 86-2277,1986.
  • 9Roos F W.Microblowing for high-angle-of-attack vortex fl-ow control on fighter aircraft[J].Journal of Aircraft,2001,38(3):454-457.
  • 10Bernhardt J E,Williams D R.Close-loop control of forebody flow asymmetry[J].Journal of Aircraft,2000,37(3):491-498.

共引文献17

同被引文献53

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部