期刊文献+

求解RANS方程的高阶间断Galerkin方法研究 被引量:3

Exploring High-Order Accurate Discontinuous Galerkin Method for Numerical Solution of Compressible Reynolds-Averaged Navier-Stokes(RANS) Equations
下载PDF
导出
摘要 基于二维结构网格,对间断Galerkin方法(DGM)求解雷诺平均Navier-Stokes(RANS)方程进行了研究。根据混合有限元方法的思想,引入辅助变量,对粘性项中的高阶导数项进行降阶处理,再应用DGM对辅助变量方程和降阶后的RANS方程进行联立求解。对平板层流流动进行了数值模拟,结果表明,随着逼近多项式次数的增加,速度型和摩擦系数更加接近Blasius解。此外,还引入了Bald-win-Lomax湍流模型,对NACA0012翼型跨音速粘性流场进行了数值模拟,与实验结果进行了对比,进一步验证了算法的可靠性。 Sections 1 and 2 of the full paper explain the exploration mentioned in the title. Section 1 gives quite de- tailed explanation of two-step discretization ; its core consists of: ( 1 ) with the mixed finite element method, we add an unknown variable to reduce the number of orders of the second-order derivatives of viscous terms; (2) we carry out the discontinuous Galerkin discretization of the RANS equations whose orders have been reduced. Section 2 is entitled "numerical results and their analysis" ; its core consists of: ( 1 ) we carry out the numerical simulation of the laminar flow over a flat plate; (2) we use the Baldwin-Lomax turbulence model and the moment limiter to sim- ulate the transonic viscous flow field over NACA0012 airfoil; the simulation results, presented in Figs. 1 through 8, and their comparison with the available experimental data show preliminarily that our discontinuous Galerkin method can indeed solve the RANS equations satisfactorily and that the simulation results agree reasonably well with the experiment data.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第3期407-411,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(11002117)资助
关键词 计算复杂性 可压缩流动 计算流体力学 有限元方法 GALERKIN方法 网格生成 模型 纳维-斯托克斯方程 多项式 间断GALERKIN方法 computational complexity, compressible flow, computational fluid dynamics, finite element method,Galerkin methods, mesh generation, models, Navier Stokes equations, polynominals discontinuousGalerkin method
  • 相关文献

参考文献14

  • 1Reed W H, Hill T R. Triangular Mesh Methods for the Neutron Transport Equation. Technical Report LA-UR_73-479, 1973.
  • 2Cockbum B, Shu C W. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws H: General framework. Math Comp, 1989, 52:411-435.
  • 3Cockburn B, Hou S C, Shu C W. TVB Runge-Kutta Discontinuous Galerkin Method for Conservation Laws IV : the Muhidimen- sional Case. J Comp Phys, 1990, 54:545-581.
  • 4Cockburn B, Shu C W. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAMJ Numer Anal, 1998, 35:2440-2463.
  • 5Bassi F, Rebay S. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations. J Comput Phys, 1997, 131:267-279.
  • 6Bjom Landmann, Manuel Kessler, Siegfried Wagner, Ewald Kramer. A Parallel, High-Order Discontinuous Galerkin Code for Laminar and Turbulent Flows. Computers & Fluids 37 (2008) 427-438.
  • 7Cockbum B, Shu C W. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAMJ Numer Anal, 1998, 35:2440-2463.
  • 8Hartmann R, Houston P. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations I : Method Formulation. Int J Numer Anal Model, 3 ( 1 ) : 1-20, 2006.
  • 9Hartmann R, Houston P. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations lI : Goal-Orien- ted a Posteriori Error Estimation. Int J Numer Anal Model, 2006, 3 (2) :141-162.
  • 10Oden J T, Baumann C E. A Conservative DGM for Convection-Diffusion and Navier-Stokes Problems. In Cockburn B, Kar- niadakis G E, Shu C W, Editors, Discontinuous Galerkin Methods, Springer, 2000, 179-196.

同被引文献38

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部