期刊文献+

一种改进的视频兴趣区目标捕获算法研究 被引量:1

An Improved Target Capture Method of Video Interest Region
下载PDF
导出
摘要 对于视频兴趣区的目标捕获技术提出了一种基于颜色梯度的背景差方法,通过结合阴影去除和连通域分析捕获兴趣目标。实验结果表明:该方法能有效解决光照突变等干扰,较好捕获兴趣区目标,减小误检率。对所实验的6个视频进行分析,在最多同时出现5个目标的视频检测中取得了92.8%的准确率、2%的误检率,且基本满足实时性。 A new background difference algorithm for interest region in video is proposed, which is based on color gradient by means of integrating shadow removal and connected domain analysis to capture the interesting target. Experimental results demonstrate that the method is capable of dealing light sudden changes as well as capturing target's region of interest, in addition to its effectiveness for eliminating non- interest region's error detection. The experiment of 6 videos with 5 targets at most, the authors obtain in the high precision and low by mistake examining, Correctly 92. 8%, by mistake examining rate of 2%, and basically meet real-time processing.
出处 《浙江理工大学学报(自然科学版)》 2012年第4期565-569,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 目标捕获 背景建模 混合高斯模型 颜色梯度 target capture background modeling gaussian mixture model color-gradient
  • 相关文献

参考文献8

  • 1Stauffer C, Grimson W E L. Learning patterns of activi- ty using real-time tracking[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence. 2000, 22 (8) : 747-757.
  • 2Sundaraj K, Retnasamy V. Fast background subtraction for real time monitoring[C]//Proceedings of the Third Lasted International Conference. Phuket, Thailand, 2007 : 382-387.
  • 3Kim K, Chalidabhongse T H, Harwood D, et al. Back- ground modeling and subtraction by codebook construc- tion[C]//International Conferrence on Image Process- ing. Singapore: 2004(5): 3061-3064.
  • 4Sigari M H, Mahmood Fathy. Real-time background modeling subtraction using two-layer codebook model [C]//Proceedings of International Multiconferenee of Engineers and Computer Scientists. Hongkong: 2008: 10-21.
  • 5Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[C]//European Con- ference of Computer Vision. Dublin: 2000:751-767.
  • 6Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects [J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2006, 28(4): 657-662.
  • 7Valentine B, Apewokin S, Linda W. An efficient chro-matic clustering-based background model for embedded vision plafforms[J]. Computer Vision and Image Under- standing, 2010(4): 1152-1163.
  • 8Khan Z H, Irene Y, Andrew G. A robust particle filter- based method for tracking single visual object through complex scenes using dynamical object shape and ap- pearance similarity [J]. Sign Process System, 2010: 9-26.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部