期刊文献+

基于运动矢量多级分析的视频全局运动估计 被引量:4

Global Motion Estimation Based on the Multi-stage Analysis of Motion Vectors
下载PDF
导出
摘要 基于运动矢量场的视频全局运动估计相较于基于像素的估计方法具有较低的计算复杂度,因而广泛应用于视频分割及视频压缩等领域中。然而噪声和前景目标等外点区域的存在,降低了全局运动估计的准确性。为了提高全局运动估计的准确度,该文提出一种基于运动矢量多级分析的全局运动估计算法,该算法根据局部运动与全局运动的运动特性差异自适应地滤除前景目标区域,由邻域矢量间相似性度量检测出纹理平滑周期区域,最后滤除孤立的噪声区域,由滤波得到的内点区域求解全局运动参数。实验结果表明,该方法能有效地滤除外点区域,提高全局运动估计的准确性。 Global motion estimation based on motion vector field has lower complexity than pixel-based method, so it is widely used in video segmentation and compression. However, outlier motion vectors, caused by image noise or foreground objects, reduce the accuracy of motion vector-based global motion estimation. In this paper, a global motion estimation algorithm based on the motion vector multi-stage processing is proposed to improve the estimation accuracy. The proposed method adaptively removes foreground objects by comparing the motion characteristics differences between the local motion and global motion area. For each block considered, the motion similarity between the neighboring blocks is exploited to detect the cycle smooth area. The isolated noise area is also filtered out. Finally, the inlier motion vectors are used to estimate the global motion parameters. Experimental results show that the proposed scheme filters effectively outlier motion vectors and improves the accuracy of global motion estimation.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第7期1538-1542,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60870010 60776834)资助课题
关键词 图像处理 全局运动估计 运动矢量场 多级外点滤除 运动参数模型 Image processing Global motion estimation Motion vector field Multi-stage outlier filter Motion parameter model
  • 相关文献

参考文献16

  • 1Chen Y M and Bajic I V. A joint approach to global motion estimation and motion segmentation from a coarsely sampled motion vector field[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(9): 1316-1328.
  • 2Li H J, Tang J H, Wu S, et al.. Automatic detection and analysis of player action in moving background sports video sequences[J]. IEEE Transactions on Circuits and Systems ]or Video Technology, 2010, 20(3): 351-364.
  • 3Keller Y and Averbuch A. Fast gradient methods based on global motion estimation for video compression[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(4): 300-309.
  • 4Kumar S, Azartash H, Biswas M, et al.. Real-time affine global motion estimation using phase correlation and its application for digital image stabilization[J]. IEEE Transactions on Image Processing, 2011, 19(5): 3406-3418.
  • 5Bin Q, Ghazal M, and Amer A. Robust global motion estimation oriented to video object segmentation [J]. IEEE Transactions on Image Processing, 2008, 17(6): 958-967.
  • 6Haque M N, Biswas M, Pickering M R, et al.. An adaptive low-complexity global motion estimation algorithm[C]. Proceeding of 28th Picture Coding Symposium, Nagoya, Japan, 2010: 598-601.
  • 7Su Y, Sun M T, and Hsu V. Global motion estimation from coarsely sampled motion vector field and the applications[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(2): 232-242.
  • 8Dinh T N and Lee G. Efficient motion vector outlier removal for global motion estimation[C]. Proceeding of IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 2011: 1-6.
  • 9Hailer M, Krutz A, and Sikora T. Evalualuation of pixel-andmotion vector-based global motion estimateion for camera motion characterizeationIC]. Proceeding of 10th Workshop on Image Analysis for Multimedia Interactive Services, London, United Kingdom, 2009: 49-52.
  • 10Yin H B, Fang X Z, Yang H, et al.. Motion vector smoothing for true motion estimation[C]. Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006: 241-244.

同被引文献51

  • 1张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:79
  • 2Hanbury A G, Serra J. Morphological operators on the unit cirele[J]. IEEE Trans. on Image Processing, 2001, 10(12): 1842-1850.
  • 3Keller Y,Averbuch A. Fast gradient methods based on global motion estimation for video compression [J]. IEEE Trans. on Circuits and Systems for Video Teehnol. , 2003, 13(4) : 300-309.
  • 4Qi B, Ghazal M, Amer A. Robust global motion estimation oriented to video object segmentation [J]. IEEE Trans. on Image Proc. , 2008, 17(6): 958-967.
  • 5Keller Y, Averbuch A. Fast gradient methods based on global motion estimation for video compression [J].IEEE Trans. on Circuits and Systems for Video Technol. , 2003, 13(4) : 300-309.
  • 6CELEBI A,AKBULUT O,URHAN O. Truncated gray coded bit-plane matching based motion estimation and its hardware Architecture[J].{H}IEEE Transactions on Consumer Electronics,2009,(03):1530-1536.
  • 7GULLU M K. Weighted constrained one-bit transform based fast block motion estimation[J].{H}IEEE Transactions on Consumer Electronics,2011,(02):751-755.
  • 8XI Z H,CHU S Y. Two-step global motion estimation algorithm based on the robustness region[J].Journal of Computational Information Systems,2013,(03):1019-1026.
  • 9HAO J J, LI O, KIM Z W. et al. Spatio-temporal traffic scene modeling for object motion detection [J]. IEEE Transactions on Intelligent Transportation Systems. 2013.14(1) :295-302.
  • 10Ochs P,Malik J, Brox T. Segmentation of moving objectsby long term video analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.36 ( 6 ) :1187-1199.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部