摘要
由于普通材料的固有耗散在低频区域的微弱性,长久以来,低频声波的衰减一直都是一个颇具挑战性的任务.为了能够在100—1000Hz范围内完全吸收某些频率的低频声波,文章作者设计了一种薄膜型的暗声学超材料样品:它是由在弹性薄膜上镶嵌有一些非对称性的硬质金属片而制成.实验表明,该样品在低频区域几乎能够百分之百地吸收声波,而在共振吸收频率处,空气中的声波波长要比薄膜的厚度大3个数量级以上.当共振发生时,硬质金属片的"拍动"导致很大的弹性曲率能量聚集在金属片的边界附近.由于薄膜的拍动模式与声波的辐射模式仅存在微弱的耦合作用,而弹性薄膜的整体能量密度又比入射声波的能量密度大2—3个数量级,该样品本质上是一个开放的共振腔,这也是它能够高效地吸收低频声波的原因所在.
The attenuation of low-frequency sound has been a challenging task because the intrinsic dissipation of materials is inherently weak in this regime. Here we present a thin-film acoustic metamaterial, comprising an elastic membrane decorated with asymmetric rigid platelets, that aims to totally absorb lowfrequency airborne sound at selective resonance frequencies ranging from 100--1000 Hz. Our samples can reach almost unity absorption at frequencies where the relevant sound wavelength in air is three orders of magnitude larger than the membrane thickness. At resonances, the flapping motion of the rigid platelets leads naturally to a large elastic curvature energy density at their perimeter regions. As the flapping motions couple only minimally to the radiation modes, the overall energy density in the membrane can be two to three orders of magnitude larger than the incident wave energy density at low frequencies, forming in essence an open cavity.
出处
《物理》
CAS
北大核心
2012年第7期425-433,共9页
Physics
关键词
弹性薄膜
声学超材料
低频声波的吸收
弹性能量密度
共振腔
membrane, acoustic metamaterials, absorption of low frequency sound, elastic energy density, resonant cavity