期刊文献+

基于多分类投影极速学习机的快速人脸识别方法 被引量:3

Fast Face Recognition Using Multiclass Projection Extreme Learning Machine
下载PDF
导出
摘要 提出了一种基于多分类投影极速学习机的快速人脸识别方法.首先采用2DGabor小波提取所有人脸样本图像的人脸特征,然后将学习样本的人脸特征用于训练多分类投影向量机,最后将训练好的多分类投影极速学习机用于分类.采用CMU-PIE和ORL人脸数据库进行了对比实验,大量实验结果证实所提方法的识别正确率和速度均优于极速学习机和支持向量机方法. A novel face recognition method based on Multi-class Projection Extreme Learning Machine(MPELM) is proposed in this paper.First,all face images are decomposed by using 2D Gabor.Then the face feature as study samples to MPELM classifier are applied.Finally,MPELM classifier are used for classification,then face recognition results will be obtained.The experiments are performed on the CMU-PIE and ORL face databases,and the experimental results indicate that the proposed method has better performance than ELM-based method and SVM-based method.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第7期13-17,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(60972146) 中国博士后科学基金(20110491661) 华为创新基金项目(IRP-2011-03-21)
关键词 极速学习机 人脸识别 GABOR小波 支持向量机 extreme learning machine face recognition Gabor wavelet support vector machine
  • 相关文献

参考文献8

  • 1Semih Ergin, Serdar cakir, Nezih O Gerek, et al. A new implementation of common matrix approach using third-order tensors for face recognition[J]. Expert Sys- tems with Applications, 2011,38(4) : 3246-3251.
  • 2Seyda Ertekin, Leon Bottou, LeeGiles C. Nonconvex online support vector machines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33 (2) :368-381.
  • 3Huang G B. , Zhu Q Y, Siew C K. Extreme learning machine., theory and applications [J]. Neurocomput- ing, 2006,70 (1) : 489-501.
  • 4Huang G B, Zhu Q Y, Siew C K. Real-time learning capability of neural networks[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 863-878.
  • 5Guangbin Huang, Lei Chen. Enhanced random search based incremental extreme learning machine[J]. Neu- rocomputing, 2008,71(16) : 3460-3468.
  • 6邓万宇,郑庆华,陈琳,许学斌.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287. 被引量:162
  • 7Deng WY, Zheng Q, Lian S, et al. Ordinal extreme learning machine[J]. Neurocomp utting, 2010, 74 (1/ 3) : 447-456.
  • 8Jing X Y, Yao Y F, Zhang D. Face and palmprint pix- el level fusion and Kernel DCV-RBF classifer for small sample biometric recognition[J]. Pattern Recognition, 2007, 40(11):3209-3224.

二级参考文献17

  • 1Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2): 251-257.
  • 2Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6) : 861-867.
  • 3Huang G-B, Babri H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 1998, 9(1): 224-229.
  • 4Huang G-B. Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Transactions on Neural Networks, 2003, 14(2): 274-281.
  • 5Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70 (1-3): 489-501.
  • 6Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer, 1995.
  • 7Rousseeuw P J, Leroy A. Robust Regression and Outlier Detection. New York: Wiley, 1987.
  • 8Rumelhart D E, McClelland J L. Parallel Distributed Processing. Cambridge.. MIT Press, 1986, 1(2): 125-187.
  • 9Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge: Cambridge University Press, 2000.
  • 10Tamura S, Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Transactions on Neural Networks, 1997, 8(2): 251-255.

共引文献161

同被引文献14

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部