期刊文献+

阈值法在肝包虫病CT图像分割中的应用 被引量:1

Applicatiom of threshold segmentation of CT images in liver hydatid disease
下载PDF
导出
摘要 目的探讨阈值法在肝包虫病CT图像分割中的应用价值。方法选择20张患有肝包虫病的病患CT图像,对CT图像进行归一化预处理,然后对其进行阈值法分割。结果成功分割17张,分割失败3张,分割成功率为85%,过度分割和漏分割情况较少,分割的结果图像比较清晰饱满,光滑连通性好,基本没有线条缺损的现象。结论阈值法适合肝包虫病CT图像的分割,基本能达到比较准确的判断。能很好地帮助肝包虫病CT图像的纹理特征、形状特征及其他特征的提取,较理想地将目标与背景分开来实现分割。 Objective To explore the application value of the threshold method in the segmentation of CT images of liver hydatid disease. Methods Twenty patients suffering from liver hydatid disease were tested by CT, the CT images were normalized preprocessing and their threshold segmentations were taken. Re- suits Seventeen sheets were splited successfully, 3 sheets were failed, the success rate was 85%. Exces- sive and leakage points were less, the resulting images were clear and full, smooth connectivity, with no lines defects basically. Conclusion Threshold method is more suitable for segmentation of CT images of liver hydatid disease, it can meet the more accurate judgments. Threshold method can help to extract the texture features, shape features and other feature liver hydatid disease CT image ,and can separate the tar- get and background separately to achieve segmentation.
出处 《新疆医科大学学报》 CAS 2012年第7期899-901,共3页 Journal of Xinjiang Medical University
基金 新疆维吾尔自治区科学技术厅新疆少数民族科技骨干人才特殊培养科研专项基金项目(200723104)
关键词 肝包虫病 图像分割 阈值法 liver hydatid disease l image segmentation threshold method
  • 相关文献

参考文献10

二级参考文献24

  • 1张红英,吴斌,彭启琮.An Improved Algorithm for Image Edge Detection Based on Lifting Scheme[J].Journal of Electronic Science and Technology of China,2005,3(2):113-115. 被引量:8
  • 2贾文霄,汪洁,陈宏.肝包虫病的磁共振诊断[J].临床放射学杂志,1995,14(4):226-227. 被引量:9
  • 3薛东辉,朱耀庭,朱光喜,熊艳.分形方法用于有噪图像边缘检测的研究[J].通信学报,1996,17(1):7-11. 被引量:13
  • 4CREMERS D, TISCHHAUSER F, WEICKERT J, et al. Diffusion snakes: Introducing statistical shape knowledge into the mumford-shah functional[J]. International Journal of Computer Vision, 2002, 50(3): 295-313.
  • 5MCINERNEY T, TERZOPOULOS D. Deformable models in medical image analysis: a survey[J]. Medical Image Analysis, 1996, 1(2): 91-108.
  • 6JUSTICE R K, STOKELY E M. 3-D segmentation of MR brain images using seeded region growing[C]//18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Amsterdam: IEEE, 1996: 1083-1084.
  • 7KASS M, WITKIN A, TERZOPOULOS D. Snake: Active contour models[J]. International Journal of Computer Vision, 1987, (4): 321-331.
  • 8TERZOPOULOS D, WITKIN A, KASS M. Constraints on deformable models: Recovering 3d shape and nonrigid motion[J]. Artificial Intelligence, 1988, 36: 91-123.
  • 9XU C Y, PRINCE P L. Snakes, shapes, and gradient vector flow[J]. IEEE Trans on Image Processing, 1998, 7(3): 359-369.
  • 10于晓含,朱哈.伊垒.叶斯基,欧堤.斯佩拉,奥立.哈特恩,图莫.维克马基,汤伊凡.卡特拉.基于区域增长及边缘检测的一种图象分割方法[J].北方交通大学学报,1997,21(1):47-52. 被引量:6

共引文献37

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部