期刊文献+

基于二项级数近似的结构概率分析

PROBABILITY ANALYSIS OF STRUCTURES BASED ON BINOMIAL SERIES APPROXIMATIONS
原文传递
导出
摘要 结构稳健优化设计中,一个关键的环节是分析结构响应量的概率特性,即计算响应的均值和方差。常用的方法主要有泰勒级数法、蒙特卡洛法以及数值积分法等。其中泰勒级数法精度较差,不适用于参数方差较大的随机结构,而蒙特卡洛法和高斯积分法计算量又过大。为了提高结构稳健性分析的计算效率,将结构位移的二项级数近似技术引入到高斯积分方法之中,提出一种结构位移均值及方差的计算方法。同时,用伴随向量法推导了相关的灵敏度计算公式。通过一个算例与已有的方法进行了比较,表明该方法较大程度上减少了高斯积分法的计算量,而与泰勒级数法相比,该方法又具有较高的计算精度,并且其灵敏度计算不再需要重分析,计算量较少。 One of the key techniques for structural robust optimization is the probability characteristics analysis for structure responses such as calculations of their mean and variance values. Typically used methods include the Taylor series method, Monte Carlo simulation and numerical integration methods etc. The Taylor series method is not accurate when the variances of random parameters are large. On the other hand, Monte Carlo simulation and numerical integration methods are relatively accurate but computationally inefficient. To abate computational efforts, in this paper, the binomial series approximation for structural displacements is introduced into the Gauss-Hermite quadrate formula. By doing so, full finite element analyses are not needed at the integration points, thus the computational amount is reduced efficiently. The sensitivities of means and variances of displacements with respect to the mean values of input variables are also derived by the adjoint method. A numerical example is provided to demonstrate the effectiveness of the proposed method. The results are encouraging in terms of accuracy and efficiency.
作者 曹鸿钧 许楠
出处 《工程力学》 EI CSCD 北大核心 2012年第7期270-274,297,共6页 Engineering Mechanics
基金 中央高校基本科研业务费专项资金(JY10000904008)
关键词 结构稳健优化 概率分析 高斯积分 二项级数近似 灵敏度分析 伴随法 structural robust optimization probability analysis gauss-hermite quadrature binomial seriesapproximation sensitivity analysis adjoint method
  • 相关文献

参考文献10

  • 1Huang Beiqing, Du Xiaoping. A robust design method using variable transformation and gauss-hermite integration [J]. International Journal for Numerical Methods in Engineering, 2006, 66: 1841-1858.
  • 2Kugele S C, Trosset M W, Watson L T. Numerical integration in statistical decision-theoretic methods for robust design optimization [J]. Journal of Structural and Multidisciplinary Optimization, 2008, 36: 457-475.
  • 3Lee S H, Chen W, Kwak B M. Robust design with arbitrary distributions using gauss-type quadrature formula [J]. Journal of Struc~tral and Multidisciplinary Optimization, 2009, 39:227-243.
  • 4刘德顺,岳文辉,杜小平.不确定性分析与稳健设计的研究进展[J].中国机械工程,2006,17(17):1834-1841. 被引量:36
  • 5Kumar A, Nair P B, Keane A J, Shahpar S. Robust design using Bayesian Monte Carlo [J]. International Journal for Numerical Methods in Engineering, 2008, 73: 1497- 1517.
  • 6Jin R, Du X, Chen W. The use of metamodeling techniques for optimization under uncertainty [J]. Journal of Structural and Multidisciplinary Optimization, 2003, 25(2): 99- 116.
  • 7Kirsch Uri. Reduced basis approximations of structural displacements for optimal design [J]. AIAA Journal, 1991, 29(10): 1751- 1758.
  • 8Kirsch U, Papalambros Y. Exact and accurate reanalysis of structures for geometrical changes [J]. Engineering with Computers, 2001, 17:363-372.
  • 9Du X, Chen W. Towards a better understanding of modeling feasibility robustness in engineering design [J]. ASME Journal of Mechanical Design, 2000, 122(4): 385-394.
  • 10Choi K K, Kim Nam-Ho. Structural sensitivity analysis and optimization 1: Linear systems [M]. Springer, 2005: 123-124, 151-153.

二级参考文献54

  • 1林忠钦,艾健,张卫刚,李淑慧.冲压稳健设计方法及其应用[J].塑性工程学报,2004,11(4):56-60. 被引量:16
  • 2杨涛,何叶,魏东梅,李磊民.微机电器件的稳健设计[J].工程设计学报,2004,11(3):124-127. 被引量:8
  • 3张义民,贺向东,刘巧伶,闻邦椿.任意分布参数的机械零件的可靠性稳健设计(一):理论部分[J].工程设计学报,2004,11(5):233-237. 被引量:30
  • 4Otto K N, Antonsson E K. Extensions to the Taguchi Method of Product Design[J]. ASME, Journal of Mechanical Design, 1991,115(1) :5-13.
  • 5Du X, Chen W. Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design[J]. ASME, Journal of Mechanical Design, 2000, 122(4) :385-394.
  • 6Hasofer A M, I.ind N C. Exact and Invariant Second-moment Code Format[J]. ASCE, Journal of the Engineering Mechanics Division, 1974,100( 1 ) : 111-121.
  • 7Rackwitz R, Fiessler B. Structural Reliability Under Combined Random Load Sequences [J]. Journal of Computers and Structures, 1978,9(4):489-494.
  • 8Chen X, Lind N C. Fast Probability Integration by Three- parameter Normal Tail Approximation [J].Structural Safety. 1983,1(2) :269-276.
  • 9Du X, Sudjianto A. First-order Saddle-point Approximation for Reliability Analysis[J]. AI A Journal, 2004,42(1) :I-9.
  • 10Taguchi G, Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream[M].New York:ASME Press, 1993.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部