期刊文献+

CaCO_3对煤灰熔融特性和黏温特性影响的研究 被引量:32

Effects of CaCO_3 on the Fusion Characteristic and Viscosity-temperature Behaviour of Coal Ashes
下载PDF
导出
摘要 为研究CaCO3在高温条件下对高灰熔点煤灰的熔融特性和黏温特性的影响,试验选取已应用于气流床气化装置的煤样A、B和C为原料,分别利用灰熔点仪和高温黏度计对添加CaCO3的煤灰样品进行熔融特性和黏温特性测量,并采用热力学计算软件FactSage 6.1中的Phase Diagram和Equilib模块进行热力学平衡计算。结果表明,Al2O3和SiO2含量较高的煤灰样品在熔融的过程中产生大量的莫来石,导致其灰熔点较高。CaCO3的添加可以有效抑制莫来石的生成,改变高温下煤灰中主固相物质的类型,降低固相物质的百分含量,降低煤灰的全液相温度,从而达到降低煤灰熔融性温度和黏度以及改变渣型的效果。数值计算的结果与试验结果基本一致,表明化学热力学反应平衡分析方法是研究灰渣熔融特性和黏温特性一种有效手段。 In this paper,the effect of CaCO3 on the fusion characteristic and viscosity-temperature behavior of coal ashes was studied.Three coal samples applied in entrained flow gasification plant in China,including coal A,B,and C were prepared as raw materials for the ash fusion temperature(AFT) and viscosity tests.The thermodynamic equilibrium modeling was carried out using Phase Diagram and Equilib modules of FactSage 6.1 software.The results indicate that a large amount of mullite forms in the coal ash samples with high levels of Al2O3 and SiO2 in the melting process.It is the main reason for the high ash fusion temperature.CaCO3 can effectively suppress the formation of mullite,change the type of main solid phases in ash samples,reduce the percentage content of solid phases and reduce the liquids temperature.The addition of CaCO3 can achieve the purpose of reducing the ash fusion temperature and viscosity values,and changing the type of the slag.Numerical results consistent with the experimental results,indicating that the equilibrium thermodynamic analysis is a practical and effective measure to study the fusion characteristic and viscosity-temperature behavior of coal ashes.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第20期49-55,138,共7页 Proceedings of the CSEE
基金 国家重点基础研究发展计划项目(973项目)(2010CB227005) 国家863高技术基金项目(2008AA05031) 国家自然科学基金项目(21106046)~~
关键词 助熔剂 熔融特性 黏温特性 FactSage flux; fusion characteristic; viscositytemperature behaviour; FactSage
  • 相关文献

参考文献20

  • 1高健,倪维斗,小山智规.IGCC系统中空气气化炉与氧气气化炉的对比研究[J].燃气轮机技术,2007,20(2):1-5. 被引量:12
  • 2Browning G J. An empirical method for the prediction of coal ash slag viscosity[J]. Energy & Fuels, 2003, 17(3): 731-737.
  • 3Hoy H R, Roberts A G, Wilkins D M. Behaviour of mineral matter in slagging gasification processes[J]. Joumal of the Institution of Gas Engineers, 1965, 5(2): 444-469.
  • 4Groen J C. Gasification slag rheology and crystallization in titanium-rich, iron-calcium-aluminosilicate glasses[J]. Fuel Processing Technology, 1998, 56(2): 103-127.
  • 5Sage W L. Relationship of coal ash viscosity to chemical composition[J]. Combustion, 1959, 31(5): 41-48.
  • 6Ninomiya Y. Ash melting behavior under coal gasification conditions[J]. Energy Conversion and Management, 1997, 38(13): 1405-1412.
  • 7Patterson J H. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J]. Fuel, 2000, 79(13): 1671-1678.
  • 8Hurst H J. Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes[J]. Fuel, 1999, 78(15): 1831-1840.
  • 9Oleschko H, Mtiller M. Influence of coal composition and operating conditions on the release of alkali species during combustion of hard coal [J]. Energy & Fuels, 2007,21(6): 3240-3248.
  • 10van Dyk J C, Melzer S, Sobiecki A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and FactSage modelling[J]. Minerals Engineering, 2006, 19(10): 1126-1135.

二级参考文献58

共引文献98

同被引文献320

引证文献32

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部