期刊文献+

基于图像识别的小麦腥黑穗病害诊断技术研究 被引量:6

Study on diagnosis of Tilletia based on image recognition
下载PDF
导出
摘要 传统的检疫小麦腥黑穗病害的方法效率较低影响检测的稳定性和客观性。提出一种基于图像识别的小麦腥黑穗病分类诊断技术。以显微镜下采集的小麦病害图像为研究对象,对其进行滤波增强及病害区域分割,再提取单个病害区域图像的颜色、形状和纹理等特征参数;最后利用归一化后的特征值,通过BP神经网络分类器实现了小麦腥黑穗病害的诊断。将计算机图像识别结果和实际小麦腥黑穗病类型进行对比,表明了该诊断技术的可行性和有效性。 The traditional quarantine treatment of ensure the stability and objectivity of results. Therefore, TiUetia has low efficiency, which is difficult to a kind of diagnosis technique was proposed to classify Tilletia based on image recognition. Regarding wheat disease images collected from micro-scope as research subjects, they were processed with filtering enhancement and regionsegmentation of diseases and collected characteristic parameters of a single disease's image, such as color, shape and vein. Then the diagnosis of this disease was completed after the operation/classification of normalized eigenvalues by BP neural network classifiers. It was demonstrated feasibly and effectively by comparing image recognition results of computers with the disease's features.
出处 《东北农业大学学报》 CAS CSCD 北大核心 2012年第5期74-77,共4页 Journal of Northeast Agricultural University
基金 质检公益性行业科研专项(200910008)
关键词 图像识别 小麦腥黑穗病 病害诊断 检疫分类 image recognition Tilletia disease diagnosis quarantine classification
  • 相关文献

参考文献11

  • 1新农网.小麦腥黑穗病防治技巧[OL].新农网.(2010-04-10).http://www.zgny.tom.cn/ifm/tech/2010-4-10/101504.shtml.
  • 2梁再群 郭翼奋 朱颖初 等.根据统计分析冬孢子形态特性区分小麦矮腥黑穗病和网腥黑穗病的方法.植物保护学报,1982,:243-250.
  • 3Sasaki Y, Okamoto T. Automatic diagnosis of plant disease- recognition between healthy and diseased lea![J], Journal of Ja- panese Society of Agricultural Machinery, 1999, 61(2): 119-126.
  • 4Chesmore D, Bernard T, Inman A J, et al. Image analysis for the identification of the quarantine pest Tilletia ind/ca[J]. EPPO Bull- etin, 2003, 33(3): 495-499.
  • 5陈兵旗,郭学梅,李晓华.基于图像处理的小麦病害诊断算法[J].农业机械学报,2009,40(12):190-195. 被引量:50
  • 6刘豪,潘中良.电路板图像分割的K均值聚类算法研究[J].自动化与信息工程,2009,30(2):1-4. 被引量:3
  • 7刘惜若.黑粉均与黑粉病[M].北京:农业出版社,1984.
  • 8于新文,沈佐锐,高灵旺,李志红.昆虫图像几何形状特征的提取技术研究[J].中国农业大学学报,2003,8(3):47-50. 被引量:63
  • 9Hu M K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962, 8(2): 179-187.
  • 10Haralick R M, Shanmugam K, Dinstein I. Texture features for image classification[J]. IEEE Transactions on Systems Manage- ment and Cybertics, 1973, 3(6): 610-621.

二级参考文献52

共引文献150

同被引文献87

引证文献6

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部