期刊文献+

基于衰减滑动窗口数据流聚类算法研究 被引量:6

Attenuation data streams based on sliding window clustering algorithm
下载PDF
导出
摘要 数据流具有数据流量大、流量连续且快速、难以存储和恢复等特性,其挖掘质量和效率是检验挖掘算法的重要标准。传统的数据流聚类挖掘算法是基于界标窗口、滑动窗口和衰减窗口模型,其算法的聚类质量较差,时间复杂度高等不足,就此类问题,研究一种滑动衰减窗口的数据流聚类算法,并对算法进行了设计与实现,有效的改善传统数据流算法聚类质量和时间效率的问题。仿真实验结果表明了该算法的有效性。 Data streams with continuous and rapid features, it is difficult to storage and recovery, and its mining quality and effi- ciency are the important standard of test mining algorithm. The traditional data stream clustering algorithm is based on the land- mark window, sliding window and the attenuation window model, the clustering algorithm of poor quality, high time complexi- ty, on a sliding attenuation window data stream clustering algorithm, and the algorithm design and implementation, effectively improve the traditional data flow algorithm the clustering quality and efficiency problem. Through the simulation experiment, verified the effectiveness of the algorithm, to achieve a more satisfactory effect.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第7期2659-2662,2796,共5页 Computer Engineering and Design
关键词 衰减 滑动窗口 聚类 算法 data flow attenuation sliding window clustering algorithms
  • 相关文献

参考文献5

二级参考文献58

共引文献15

同被引文献74

  • 1田俊峰,王惠然,刘玉玲.基于属性排序的入侵特征缩减方法研究[J].计算机研究与发展,2006,43(z2):565-569. 被引量:2
  • 2陈燕,耿国华,郑建国.一种改进的基于密度的聚类算法[J].微机发展,2005,15(3):17-19. 被引量:13
  • 3孙玉芬,卢炎生.流数据挖掘综述[J].计算机科学,2007,34(1):1-5. 被引量:36
  • 4常建龙,曹锋,周傲英+.基于滑动窗口的进化数据流聚类[J].软件学报,2007,18(4):905-918. 被引量:61
  • 5Zhu Yunyue, Dennis Shasha.Statstream: statistical monitoringof thousands of data streams in real time[C]//VLDB.Hongkong:[s.n.],2002:358-369.
  • 6Aggarwal C C,Han J, Wang J, et al.A framework for clusteringevolving data streams[C]//VLDB.Berlin : [s.n.], 2003 : 81 -92.
  • 7Cao F,Ester M,Qian W,et al.Density-based clustering overan evolving data stream with noise[C]//2006 SIAM Conferenceon Data Mining.Bethesda,MD : [s.n.],2006 : 326-337.
  • 8Frey B J, Dueck D.Clustering by passing messages betweendata points[J].Science,2007,315(5814) :972-976.
  • 9Zhang X, Furtlehner C, Sebag M.Data streaming with affinitypropagation[C]//ECML/PKDD .Berlin : Springer-Verlag, 2008 :628-643.
  • 10Wagstaff K, Cardie C.Clustering with instance-level con-straints[C]//Proc of the 17th lnt,1 Conf on Machine Learning(ICML 2000).Stanford:Morgan Kaufmann Publishers,2000:1103-1110.

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部