期刊文献+

利用Ontology改进的自动化图像标注方法 被引量:1

Improved method of automated image annotation based ontology
下载PDF
导出
摘要 图像检索系统大多是利用图像的底层特征如颜色、纹理和图像来分析图像,没有考虑图像内容及其对象的内容语义,导致对图像的理解不佳。为使系统能更准确的理解图像中的对象及其深层语义,分析了目前图像标注的优缺点,提出了一种以底层特征为基础,利用本体论建构的知识辅助计算机分析图像中实体对象,判断对象与对象间在现实世界中存在的合理相关性,进而对图像进行标注。实验结果显示加入本体论辅助标注图像大大提高了图像识别的准确性。 The past image retrieval systems utilize low-level featrues such as color, texture and shape, to analyze image, but this does not take semantics of content and objects in images into account which usually leads to misunderstanding of images. To understand objects in the images accurately and its deep semantic by computer, the advantages and disadvanta- ges in present image annotation are analyzed, then an improved method is presented which applies semantics of content on analysis of physical objects in images, so computers can accurately detect objects, deduce the relations between objects and extract the underlying semantics. Comparing between conventional low-level annotations and our newly proposed ontolo- gy-based annotations, ontology enhances computer~ s comprehension for images, and the accuracy of object recognition is also increased.
作者 周运 刘栋
出处 《计算机工程与设计》 CSCD 北大核心 2012年第7期2739-2743,共5页 Computer Engineering and Design
基金 河南省教育厅自然科学基础研究计划基金项目(2010B520012)
关键词 本体 图像标注 特征抽取 主成分分析 对象识别 ontology image annotation feature extraction principal components analysis object recognition
  • 相关文献

参考文献14

  • 1Halaschek Wiener. Annotation and provenance tracking in se- mantic web photo libraries [C]. Proceedings of the Interna- tional Conference onProvenanee and Annotation of Data, 2006: 82-89.
  • 2Khan. Standards for image annotation using semantic web [J]. Computer Standards &Interfaces, 2007, 29 (2): 196-204.
  • 3Cirnino JJ, Zhu X. The practical impact of ontologies on biomedicalinformatics[J].Methods Inf Med, 2006, 45 (Suppl 1) 124-135.
  • 4Barnard K, Duygulu P, Guru R, et al. The effects of seg- mentation and feature choice in a translation model of object recognition [C].Proceedings on Computer Vision and Pattern Recognition, 2008:675 682.
  • 5Chen Y, Wang J Z. Image categorization by learning and rea- soning with regions [J]. Journal of Machine Learning Re- search, 2007, 5. 913-939.
  • 6Langlotz. RadLex: A new method for indexing online educa- tional materials [ J ]. Radiographics, 2006, 26 ( 6 ): 1595-1597.
  • 7Mueen A, Zainuddin R, Baba M. Automatic multilevel medi- cal image annotation and retrieval [J]. J Digit Imaging, 2007, 21 (3): 1123-1130.
  • 8Petridis. Knowledge representation and semantic annotation of multimedia content [J]. Iee Proceedings-Vision Image and Sig- nal Processing, 2006, 153 (3): 255-262.
  • 9] Rubin DL. Creating and curating a terminology for radiology: Ontology modeling and analysis[J]. J Digit Imaging, 2008, 21 (4): 343-351.
  • 10Ruttenberg A. Advancing translational research with the se- manticweb[J]. BMCBioinformatics, 2007, 8 (3): S2.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部