期刊文献+

基于小波矩和支持向量机的装甲车辆识别研究 被引量:3

Study on Recognition for Armored Vehicle Based on Wavelet Moment and SVM
原文传递
导出
摘要 分析了应用小波矩特征进行地面复杂背景下装甲车辆识别的理论依据,实地采集了某型坦克和某型步兵战车的灰度图像,提取其小波矩特征,采用支持向量机进行分类识别,进行了性能测试实验。结果表明:归一化后的图像的小波矩特征具有良好的不变性;小波矩特征对噪声和局部遮挡有较强的适应性,识别率比较稳定;支持向量机方法具有良好的分类识别能力。 The theory that the wavelet moment could be applied to solve the problem of recognizing ar- mored vehicles under complex ground background is analyzed. True gray images of certain tank and infantry fighting vehicle are acquired, the features of wavelet moment are extracted, and classification and recognition are carried out by using Support Vector Machine (SVM). Performance test experiments are made, the results show that: the features of wavelet moments of the normalization images are stable; the characteristics of wavelet moment have better adaptation to noise and partial-cover, and the recognition rate is more stable ; the method of SVM has better capabilities of classification and recognition.
出处 《装甲兵工程学院学报》 2012年第3期61-64,共4页 Journal of Academy of Armored Force Engineering
基金 军队科研计划项目
关键词 小波矩 HU矩 支持向量机 识别 wavelet moment Hu moment Support Vector Machine (SVM) recognition
  • 相关文献

参考文献7

  • 1Shen D G, Ip H H S. Discriminative Wavelet Shape Descriptors for Recognition of 2-Dpatterns [ J ]. Pattern Recognition, 1999, 32(2): 151-165.
  • 2张琦,樊养余.基于小波矩不变量的海上目标识别[J].计算机工程与科学,2007,29(2):59-61. 被引量:5
  • 3张虹,陈文楷.一种基于小波矩的图像识别方法[J].北京工业大学学报,2004,30(4):427-431. 被引量:11
  • 4Vapnik V N. The Nature of Statistical Learning Theory [ M ]. Berlin: Springer Verlag, 1995 : 25 - 55.
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 6Chang C C, Lin C J. LIBSVM : A Library for Support Vector Ma- chines [ EB/OL]. [2012 - O1 - 20]. http: //www. csie. ntu. edu. tw/ cjlin/libsvm.
  • 7Hsu C W, Chang C C, Lin C J. A Practical Guide to Support Vector Classification [ EB/OL]. ( 2010 - 04 - 15 ) [ 2012 - 01 - 20]. kttp: // ,sww. esie. ntu. edu. tw/ cjiln/papers/uide/ guide, pdf.

二级参考文献14

  • 1金琪,戴汝为.矩,不变矩,角度矩及傅里叶描绘子[J].模式识别与人工智能,1993,6(3):181-188. 被引量:13
  • 2HUM. Visual pattern recognition by moment invariants[J]. Ire Trans Inf Theory, 1962(8): 179-187.
  • 3LI Y. Reforming the theory of invariant moments for pattern recognition[J]. Pattern Recognition, 1992, 25(7):723-731.
  • 4TEAGUE M. Image analysis by the general theory of moments[J]. Opt Soc Amer, 1980, 70(8): 920-930.
  • 5DINGGAN S, HORACE H S I. Discriminative wavelet shape descriptor for recognition of 2-D patterns[J]. Pattern Recognition, 1999, 32(2): 151-165.
  • 6Hu M K.Visual Pattern Recognition by Moment Invariants[J].IEEE Trans on Information Theory,1962,8(1):179-187.
  • 7Li Y.Reforming the Theory of Invariant Moments for Pattern Recognition[J].Pattern Recognition,1992,25 (7):723-730.
  • 8Teague M.Image Analysis by the General Theory of Moments[J].Journal of Optical Society American,1980,70(8):920-930.
  • 9Belkasim S O,Shridhar M,Ahmadi M.Pattern Recognition with Moment Invariants:A Comparative Study and New Resuits[J].Pattern Recognition,1991,24 (12):1117-1138.
  • 10Shen D,Ip H H S.Discriminative Wavelet Shape Descriptors for Recognition of 2-D Patterns[J].Pattern Recognition,1999,32(2):151-165.

共引文献2286

同被引文献24

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部