摘要
This paper investigates the minimal-energy driving problem for high-speed electric train, and then proposes a three-stage optimal strategy. First, a switching system model is introduced to describe the new dynamics in high-speed electric train, which considers the extended range of speed, the energy efficiency and the regenerative brake. Based on the new model, the optimal driving strategy with minimal-energy consumption is studied, and the problem is boiled down to optimal control for switching systems. Using a numerical algorithm, a three-stage driving strategy is concluded, in which the traditional quasi-coasting stage is discarded and the maximal traction and brake are not suitable anymore. Finally, a case study on CRH is illustrated.
This paper investigates the minimal-energy driving problem for high-speed electric train, and then proposes a three-stage optimal strategy. First, a switching system model is introduced to describe the new dynamics in high-speed electric train, which considers the extended range of speed, the energy efficiency and the regenerative brake. Based on the new model, the optimal driving strategy with minimal-energy consumption is studied, and the problem is boiled down to optimal control for switching systems. Using a numerical algorithm, a three-stage driving strategy is concluded, in which the traditional quasi-coasting stage is discarded and the maximal traction and brake are not suitable anymore. Finally, a case study on CRH is illustrated.
基金
supported by the National Key Technology R&D Program(No.2009BAG12A08)
the Research Foundation of the Ministry of Railways and Tsinghua University(RFMOR&THU)(Nos.2009X003,J2009Z028)
the Research Foundation of Beijing National Railway Research Foundation of Beijing National Railway Research and Design Institute of Signal and Communication